

Journal Un peu de sucre pour une meilleure alchimie ?

Posté par Guillaume Camera le 26 janvier 2013 à 13:51.
Licence CC By‑SA.

Étiquettes :
aucune

[image:]

Yo nal' !

Récemment, pour le boulot, j'ai eu l'occasion de me mettre à SQLAlchemy, et je dois bien avouer que c'est plutôt pas mal. Par contre, j'ai trouvé que les notions de bases ne sont pas spécialement évidentes à appréhender. Ces histoires de sessions qui englobent des transactions qui sont auto-gérées par des {data/transaction}manager, etc. Bref, il y a encore des notions que je ne maitrise pas bien, mais je crois que là, ça commence à rentrer.

Je suis arrivé comme une fleur sur un développement d'un projet en cours, et il y avait des bugs de connexions IDLE avec des transactions commencées et jamais terminées.

Le truc chiant quoi.

Cela dit, c'était une excellente occasion de se pencher sur la doc, de voir comment se servir de la techno et de repérer dans le code du dit-projet comment tout ça était utilisé.

De fil en aiguille ça nous à amener à pas mal de refonte de code, on s'est aperçu que les sessions et transactions n'étaient pas utilisées correctement.

Lors de la refonte, j'ai eu envie de virer des fonctions écrites qui faisaient des choses comme ça :

mylib.getMyObjById(id)

Le truc lourd c'était qu'il y avait autant de méthode de récupération d'objets qu'il y'avait d'attribut par objet (J'exagère mais à peine). Alors, j'ai sorti mes petites mimines et j'ai commencé à faire un truc un peu plus générique.

Ca a commencé par l'implémentation d'une classe Mixin qui fournit des méthodes de classes genre, le traditionnel get.

MyObj.get(session, id=12)

Au fur et à mesure de la refonte, on s'est aperçu que c'était relativement lisible et clair que d'utiliser cette méthode, avec peu de code écrit à la base. On a un peu poussé le truc et du coup, on se retrouve avec quelques méthodes all, filter, search comme méthodes fournies.

Il y a quelques choses aussi qui nous semblait un "peu lourd" (je dis bien "un peu") à écrire , c'était la récupération d'objet suivant l'attribut d'un objet en relation.

Par exemple si on veut récupérer tous les traitements dont le status à pour nom "Ok", il fallait faire

session.query.join("status", Status.id == Treatment.status_id).filter(Status.name == u'Ok')

(Je sais, on aurait pu utiliser la jointure implicite des relations d'objet)

Ayant eu quelques fricotages avec Django, je trouvais ça quand même un peu moins verbeux pour filtrer suivant un attribut d'une relation.

Alors j'ai poussé un peu la démarche, et j'ai django-ifié une syntaxe qui faisait appel à du SQLAlchemy, du coup on pouvait faire

Treatment.filter(session, status__name=u'Ok')

On s'en est servit pour refondre complétement le code d'une application web et ça a pour le moment pas trop mal fonctionné.

Et là on est partie avec sur un application plus lourde avec un schéma beaucoup plus dense et on a bon espoir.

L'idée, ce n'est pas de refaire complétement une sur-couche à SQLAlchemy, juste de fournir un peu de sucre syntaxique pour récupérer ponctuellement un ou plusieurs objets. Je reste parfaitement conscient que pour des schémas bien compliqués et bien denses, cela ne suffira jamais. Mais utilisé ponctuellement pour la récupération simple d'objet, ça nous a fait gagner des lignes de codes.

Je suis au courant que cette syntaxe ne plait pas trop. Le double '_' (underscore) ça rebute. Mais voilà, nous ça nous a servit et on apprécie le filtrage par attribut de relation assez simplement. Encore une fois, ça n'a pas pour but de mettre une surcouche complète à SQLAlchemy, et j'insiste sur ce point.

Tout ça pour te dire, cher journal, que si jamais tu es intéressé par l'idée, nous sommes en train de mettre le bousin à disposition.

Déjà, tu pourras trouver sur github les sources: https://github.com/moumoutte/sqla_helpers/

Et un peu de doc ailleurs(parce que je sais pas encore utiliser github correctement)

Ca manque un peu de travail pour ce qui est du packaging (il faut juste prendre le temps de le faire) ce n'est pas encore sur le Pypi officiel, mais si l'idée plaît, c'est avec plaisir que nous prendrons du temps pour faire ça correctement.

Ou bien, même, il est possible que l'idée te plaise mais que tu es déjà trouvé des projets qui faisaient déjà ça et en mieux (nous on a pas trouvé, à part Elixir mais un peu trop complet (et pas assez maintenu ?) par rapport à ce qu'on voulait). Dans ce cas, hésite pas à me le dire, je pense qu'on sera content d'utiliser un truc mieux :)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

