

Journal Introduction pratique aux grands modèles de langage / LLM

Posté par aboulle le 03 mars 2024 à 11:22.
Licence CC By‑SA.

Étiquettes :

	intelligence_artificielle

	grands_modèles_de_langage

	programmation

[image:]

Sommaire

	

	
1. Notions de base
	1.1 Fonctionnement d'un LLM (Large Language Model)

	1.2 Considérations matérielles

	1.3 Compression des modèles et nomenclature

	1.4 Cas d'étude et aparté sur les licences

	2. LM studio: le point d'entrée

	3. Oobabooga/text-generation-webui: le couteau suisse

	4. Ollama: le client CLI

	5. Développer son propre client CLI

Dans cet article je me propose de faire une introduction aux grands modèles de langage, et en particulier à leur utilisation en local (i.e., hors ligne). Si vous ne souhaitez pas vous inscrire sur des plateformes en ligne, que vous êtes soucieux de l'utilisation qui est faite de vos données, que vous ne souhaitez pas débourser le prix d'un abonnement, mais que toutefois ces technologies suscitent votre intérêt, alors cet article est peut-être pour vous. Je n'aborderai pas les aspects théoriques/algorithmiques, et je serai amené à faire des simplifications que des experts jugeront probablement excessives. Par ailleurs, ce journal sera truffé d'anglicismes. Bien qu'il existe la plupart du temps des équivalents en français, la majorité des ressources disponibles étant en anglais, pour des raisons pédagogiques il m'a semblé préférable de garder les termes anglophones.

1. Notions de base

1.1 Fonctionnement d'un LLM (Large Language Model)

La tâche d'un LLM est de prédire le prochain mot d'une séquence de mots passée en instruction. De façon schématique un générateur de texte fonctionne de la façon suivante:

	le texte entré par l'utilisateur est découpé en tokens. Ces tokens correspondent à des mots, des fractions de mots, des signes de ponctuations, de symboles d'instructions… chaque LLM a son propre système de tokenisation.

	les tokens sont vectorisés, c'est-à-dire convertis en vecteurs qui seront ensuite injectés dans le réseau de neurones. L'ensemble de ces vecteurs forme un embedding. Les coordonnées des vecteurs-tokens sont déterminées pendant la phase d'apprentissage du réseau de neurone.

	la liste de ces vecteurs (ainsi que la liste de leur position) sont entrés dans le réseau de neurone. Les réseaux de neurones sont basés sur des modèles transformers, inventés par Google [1] et qui constituent la base de tous les outils tels que chatGPT d'openAI et d'autres, notamment la start-up française Mistral qui a réussi à s'imposer comme un acteur majeur du secteur.

	la sortie du réseau de neurones est une série de tokens associée à une distribution de probabilité. Une tâche essentielle consiste à choisir un token parmi ceux proposés. C'est le travail du sampler.

	dans les modèles de type GPT (Generative pre-trained transformer) la génération d'une grande suite de mot est conduite de façon auto-régressive: le token prédit est ajouté à la séquence d'entrée pour prédire le suivant, et ainsi de suite jusqu'à ce qu'un critère d'arrêt soit vérifié.

1.2 Considérations matérielles

Une des particularités des réseaux de neurones est leur taille imposante. Par exemple le modèle Llama 13B de Meta pèse 25 Go; "13B" signifie ici que le modèle contient 13 milliards de paramètres (poids et biais) ; ces paramètres sont codés sur 16 bits, de sorte que la taille finale du modèle, en octets, est 2 fois le nombre de paramètres.

Pour chaque token généré, l'intégralité du réseau de neurone doit être transféré de la mémoire vers les unités de calculs. Ceci implique que 1) le modèle doit tenir en mémoire, 2) la bande passante doit être suffisante pour ne pas altérer la vitesse de génération, et 3) les unité de calculs doivent pouvoir exécuter le réseau de neurone rapidement.

Exemple concret. Je dispose d'une carte Nvidia Quadro P5000, datant de 2016, avec 16Go de vRAM, FP16 = 138.6 GFLOPS en float 16 et une bande passante de BW = 288.5 Go/s. Le rapport opération par octet (FP16/BW) vaut 0.48. Ceci doit être comparé à la densité arithmétique du réseau de neurone [2]. Pour Llama 13B, une fois le modèle chargé en mémoire, pour une inférence, il y a 0.2Go de données déplacées et 12.8 milliards d'opérations, soit un rapport opération par octet de ~63 ce qui dépasse largement les capacités de la carte (pour le détail des calculs je vous renvoie au site précédent). Dans le cas de ce GPU, nous sommes limités par sa puissance brute. La vitesse théorique de génération de texte, pour une fenêtre de contexte de 5000 tokens (ce terme sera défini plus bas), est de ~11 tokens/s. En réalité celle-ci est plus proche de 17 tokens/s. La raison de cette différence sera abordée plus loin.

À l'inverse pour une RTX 4090 (24Go vRAM, FP16 = 82.6 TFLOPS, BW = 1008 Go/s), le rapport opération par octet vaut 83. Dans ce cas, c'est la bande passante mémoire qui limite la vitesse de génération de texte. Pour un modèle 25 Go, et une fenêtre de contexte de 5000 tokens, la vitesse de génération de texte est donc de 40 tokens/s.

Étant donnés les tarifs très élevés des GPU haut de gamme, évaluer ses besoins en termes de vitesse de génération peut être à prendre en compte avant l’acquisition d’un GPU dédié aux LLM. À noter qu'il est parfaitement possible de faire tourner un LLM sur CPU, avec cependant des vitesses de génération fortement dégradées.

1.3 Compression des modèles et nomenclature

Un lecteur attentif aura sans doute noté que le modèle Llama 13B (25Go) ne devrait pas tenir dans la mémoire vidéo de la carte Quadro P5000 (16 Go), ni dans celle de la carte RTX 4090 (24 Go). En effet, et même si cela parait complètement contre intuitif au premier abord, il est possible de réduire le nombre d'octets sur lesquels sont codés les paramètres sans significativement altérer les performances du modèle. Le terme utilisé est quantization. Le format historique est GGML (GPT-Generated Model Language) qui permet de réduire l'encodage jusqu'à 4 bits. Développé par Georgi Gerganov (également auteur de l'indispensable bibliothèque llama.cpp), ce format est aujourd'hui obsolète et remplacé par GGUF (GPT-Generated Unified Format). Il existe un autre format, GPTQ (Generalized Post-Training Quantization), optimisé pour GPU [3].

Le site incontournable pour trouver ces modèles compressés est huggingface.co, et en particulier le dépôt de TheBloke. Ceci nous amène à décrire la nomenclature de nommage des modèles. Par exemple "codellama-13b-instruct.Q5_K_M.gguf" signifie:

	modèle de base: codellama

	13b: 13 milliards de paramètres

	instruct: modèle optimisé pour les questions/réponses (chat)

	Q5_K: 5 bits de quantization

	M: taille moyenne

	gguf: le format de compression

Avec ce format, le modèle initial de 25Go passe à 9.23Go. TheBloke donne des indications qualitatives sur la dégradation des performances induites par la compression. Par exemple pour Q5_K_M: "large, very low quality loss - recommended". Avec ces formats compressés, il est donc possible d’exécuter des modèles 13B et jusqu'à 30B sur des GPUs "grands publics", avec une amélioration significative des performances (en termes de tokens/s) comparativement aux modèles non compressés.

1.4 Cas d'étude et aparté sur les licences

Il suffit de visiter le site huggingface pour se rendre compte de la quantité pharaonique de modèles disponibles. Dans ce journal je me focaliserai sur des modèles optimisés pour de la génération de code, en particulier Code Llama 13B Instruct, développé par Meta et compressé à 5bits. Stricto sensu les modèles de Meta ne sont pas libres car, même si on a accès au code, qu'on peut le modifier et le redistribuer, l'utilisation commerciale est limitée à 700 millions d'utilisateurs mensuels. Cette restriction ne posera pas de problème pour la plupart des lecteurs, mais les plus puristes pourront préférer, par exemple, StarCoder2, ou encore les modèles de Mistral qui fonctionnent très bien pour de la génération de code et sont distribués sous licence Apache… pour l'instant, puisque leurs derniers modèles ont basculé vers des licences commerciales.

2. LM studio: le point d'entrée

Pour débuter LM studio est parfait. Il est disponible sur toutes les plateformes. Il permet l’exécution locale, sur CPU ou GPU, le téléchargement de modèles sans quitter le programme, les modèles sont bien décrits, LM studio indique s'ils sont compatibles avec le matériel (notamment en termes de vRAM).

[image: LMStudio1]

Pour chaque modèle LM studio charge des paramètres par défaut (pour le prompt, calcul et sampler) qui fonctionnent, mais qu'il est possible de modifier à loisir, cf. encadré rouge ci-dessous. Comme tout fonctionne out of the box, c'est une bonne occasion d'examiner le rôle des différents paramètres de calcul, de l'inférence et du sampler. Ces paramètres sont accessibles dans le volet de droite du programme (encadré en rouge).

[image: LMStudio2]

Paramètres de prompt

	Preset: format du prompt, à choisir en fonction du modèle

	Pre-prompt: permet de guider les réponses du LLM. L'instruction "You are a helpful coding AI assistant" est celle donnée par défaut. J'ai ajouté "Answer in a concise way" afin de réduire la verbosité des réponses.

Paramètres de calcul ("GPU acceleration")

	n_gpu_layers : les réseaux de neurones sont formés d'un superposition de couches. Ce paramètre permet d'affecter le calcul d'un certain nombre de couches au GPU. Le reste sera pris en charge par le CPU. Pour Code Llama 13B (9.23 Go), qui compte 40 couches, le modèle tient intégralement dans les 16 Go de vRAM. Dans le cas contraire il aurait fallu mettre un nombre entre 1 et 40. "-1" = affecter toutes les couches au GPU.

	n_ctx : la longueur du contexte. C'est le nombre de tokens maximum passé au LLM. Cela va définir la longueur de sa mémoire. Code Llama a été entraîné avec une fenêtre de contexte d'environ 16 000 tokens et peut fonctionner pour des contextes allant jusqu'à 100 000 ! [4]. En pratique, pour des questions/réponses, quelques milliers suffisent.

Paramètres du sampler ("Inference parameters")

	temp (température) : détermine la possibilité pour le sampler de sélectionner un token qui n'a pas la probabilité la plus élevée. On parle souvent de "créativité" du LLM ; "variabilité" serait plus approprié… deux réponses successives au même prompt varieront très fortement pour des températures élevées. Traditionnellement la température varie entre 1 et 2. Pour du code on souhaite que la génération soit la plus factuelle possible, donc de très faibles températures sont préférables. La valeur est ici 0.01.

	tokens to generate: nombre maximum de token à générer. "-1" = pas de limite.

	top_k, top_p et min_p sont similaires et visent à réduire le nombre de tokens parmi lesquels choisir en sortie du réseau de neurone. top_k réduit la liste des tokens possibles aux k les plus probables. top_p, sélectionne les tokens les plus probables dont la somme est égale à top_p. Les tokens de probabilités inférieure à min_p sont exclus.

	repeat_penalty: pénalise les tokens répétés. Pour du code, mettre cette valeur au minimum possible = 1.

En tout état de cause, dès lors que la température est proche de 0, les paramètres du sampler n'ont plus d'influence car c'est toujours le token le plus probable qui sera sélectionné.

De plus amples informations sont données ici [5] [6] [7] . La documentation de ollama, fournit une liste très complète des paramètres qu'il est possible de contrôler, et une description de leur rôle. Comme beaucoup d'autres logiciels du même type, LMstudio est basé sur le projet Llama.cpp, mais n'est pas libre. Ceci nous amène donc au logiciel suivant.

3. Oobabooga/text-generation-webui: le couteau suisse

Oobabooga/text-generation-webui est un frontend à de nombreux modèles, écrit en Gradio. La prise en main est plus compliquée, mais tout est paramétrable et la licence est libre. L'installation est automatisée via un script shell, ou peut se faire à la main, ce qui peut être intéressant si une installation de python est déjà présente sur le PC. Première chose à faire, dans l'onglet "Model", télécharger le modèle depuis huggingface, en précisant bien quel niveau de compression pour les modèles GGUF (à droite ci-dessous). Les paramètres de calcul sont à définir dans la partie gauche. Il conviendra de sélectionner le "loader" adapté au model: ici llama.cpp pour codellama-13b. Les captures ci-dessous donnent les paramètres optimisés pour Code Llama. La quantité de paramètres est beaucoup plus importante que pour LM sudio ; la lecture de la documentation est fortement recommandée.

[image: Oobabooga 1]

Les paramètres d'inférence, tels que définis précédemment, se règlent dans l'onglet "Parameters". Le menu "Preset" permet de sélectionner des types de personnalités pré-configurées, mais tout est paramétrable.

[image: Oobabooga 2]

Les paramètres du prompt se règlent dans le sous-onglet "Parameters/Instruction template". Les paramètres par défaut fonctionnent bien. Ici l'instruction (entre les balises <>) a été modifiée de la même façon que dans le cas de LM studio.

[image: Oobabooga 3]

Enfin, l'interaction avec le LLM se passe dans l'onglet "Chat" (ou "Default", ou "Notebook", seule la mise en forme change), en prenant soin de sélectionner le format de prompt adapté au modèle (ici, "instruct"). La réponse fournie par LLM est correcte et rigoureusement identique à celle fournie par LM studio avec le même modèle.

[image: Oobabooga 4]

4. Ollama: le client CLI

L'interaction avec un LLM se faisant essentiellement en mode texte, une interface en ligne de commande est particulièrement pertinente. L'un des programmes le plus populaire est ollama. Les principaux LLM, et pas seulement ceux basés sur Llama, sont compatibles avec ollama. Après installation, dans un terminal il suffit d'entrer, par exemple, ollama run codellama:13b-instruct. Si le modèle est déjà présent l'interaction avec le LLM commencera. Si non, ollama téléchargera le modèle, puis initiera l'interaction. Le principal avantage de ollama est sa grande simplicité d'utilisation, permettant de rapidement tester plusieurs LLM.

Celui-ci souffre cependant de deux inconvénients. Sous Linux et Windows ollama n'est (pour l'instant ?) pas compatible avec les GPU. Sous Macos, ollama prend en charge les récentes puces M. Un deuxième problème est la valeur des paramètres par défauts. En particulier la température est trop élevée, ce qui amène ollama à produire des réponses qui ne sont pas identiques pour différentes inférences avec le même prompt. Ollama va jusqu'à produire des liens vers des images qui n'existent pas. Ceci est illustré sur la figure ci-dessous.

[image: ollama1]

Il est néanmoins possible de modifier ces paramètres, mais de façon moins immédiate que pour les précédents programmes. Pour cela il faudra créer un "Modelfile" sur mesure:

FROM codellama:13b-instruct
PARAMETER temperature 0.01
PARAMETER num_ctx 5000
PARAMETER repeat_penalty 1
PARAMETER num_predict -1
PARAMETER top_k 40
PARAMETER top_p 0.95
PARAMETER seed -1
SYSTEM """
You are a helpful coding assistant. Answer in a concise way.
"""

TEMPLATE """[INST] <<SYS>>{{ .System }}<</SYS>>

{{ .Prompt }} [/INST]
"""
PARAMETER rope_frequency_base 1e+06
PARAMETER stop "[INST]"
PARAMETER stop "[/INST]"
PARAMETER stop "<<SYS>>"
PARAMETER stop "<</SYS>>"

Les paramètres SYSTEM et TEMPLATE définissent le format du prompt. Chaque LLM a sa propre syntaxe. Ici il s'agit de celle pour des LLM basés sur llama. Le respect de la syntaxe est crucial, notamment les espaces et les sauts de lignes, faute de quoi le LLM produira des réponses potentiellement absurdes (NB: cette syntaxe a déjà été aperçue dans le cas de Oobabooga).

Il faudra ensuite créer un nouveau modèle contenant ces modifications, avant de pouvoir interagir avec :

> ollama create NomDuModèle -f /chemin/vers/le/fichier/Modelfile
> ollama run NomDuModèle

Avec ces modifications, les réponses de ollama sont parfaitement répétables et sans "hallucinations". Exemple ci-dessous:

[image: ollama2]

5. Développer son propre client CLI

Étant donné les limitations de ollama, en particulier l'absence de compatibilité GPU, il peut être intéressant de développer sa propre interface. La principale bibliothèque pour cela est llama.cpp. Cette bibliothèque est à la base de la plupart des clients existants à l'heure actuelle. Contrairement à ce que son nom pourrait laisser penser, llama.cpp est compatible avec un très grand nombre de modèles de langage. Cette bibliothèque, comme les programmes précédents, permet de fonctionner en mode serveur web qui pourra être interrogé à distance par des clients n'ayant pas les ressources suffisantes pour exécuter un LLM. Ce mode serveur est intégralement compatible avec l'API de Open AI, de sorte qu'une application développée avec l'API d'Open API pourra se brancher sur un serveur hébergé localement.

Autre avantage indéniable, il existe un très grand nombre de bindings pour différents langages. En python, il s'agit de llama-cpp-python, qui s'installe via pip. La prise en charge du GPU nécessite au préalable l’installation des outils CUDA, puis l'installation de llama-cpp-python:

> conda install cudatoolkit-dev
> CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python --no-cache-dir

Le simple fichier Test.py ci-dessous :

from llama_cpp import Llama

llm = Llama(model_path="codellama-13b-instruct.Q5_K_M.gguf",
 n_gpu_layers=-1,
 n_ctx=5000,
 n_batch=512,
 n_threads=None,
 n_threads_batch=None,
 verbose = False)

output = llm("Q: plot a sine curve. A:",
 max_tokens=10000,
 temperature=0.01,
 repeat_penalty=1,
 top_p=0.95,
 top_k=20,
 min_p=0,
 echo=False,
 stop=["Q"])

print(output['choices'][0]['text'])

renvoie la réponse suivante:

\begin{code}
plot(sin(x),x=0..2*pi)
\end{code}

Ceci diffère fortement des cas précédents. La raison est que le format du prompt sous la forme de "Q: … A:", ne respecte pas la syntaxe avec laquelle le réseau de neurones a été entraîné. La syntaxe correcte est celle décrite précédemment dans le cas de ollama.

Avec un peu de raffinement, notamment sur la mise en forme du prompt, il est possible d'avoir un client tout à fait acceptable. Pour les lecteurs intéressés, je joins le lien vers mon dépôt github: https://github.com/aboulle/mica

Voilà ce que ça donne:

[image: anim]

Évidemment, tracer une sinusoïde n'est pas une tâche très complexe. Cet exemple a servi ici à régler les différents paramètres. Je vous invite à essayer sur des cas plus complexes. Par ailleurs Code Llama et Code Llama instruct, sont multilangages, Code Llama Python étant, comme son nom l'indique, optimisé pour Python. Enfin, seul le modèle instruct, présenté dans cet article, est optimisé pour les questions/réponses. Les autres sont recommandés pour de la complétion de code et du infilling.

Remerciement : la rédaction de ce journal m'a été inspirée par l'excellent Guillaume Poggiaspalla, co-présentateur du non moins excellent et indispensable podcast Tech Café. La qualité de la veille technologique et les efforts de vulgarisation, produits deux fois par semaine, sont tout simplement impressionnants. PS: je ne suis pas du tout affilié avec ce podcast.

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/540805bee0e8ec400fa531e89728a973b7bc8ece99e79d53e4f813c3.gif
python mica.py
oading LLM, please wait...
Lprompt] >>> Jf

EPUB/bde2c58a76269d66aa0b7fa5d7f8722a1c724e43dc1997ce4da41bfb.png
Chat Default

Notebook Parameters Model Training Session

Generation Character Instruction template Chat history Upload character
Saved instruction templates
Select template to load... - [] Load -

-
Custom system message
If not empty, will be used instead of the default one.

Instruction template

Change this according to the model/LoRA that you are using. Used in instruct and chat-instruct modes.

{%- set ns = namespace(found=false) -%}
{%- for message in messages -%}

{%- if message['role'] == 'system' -%}
{%- set ns.found = true -%}
{%- endif -%}

{%- endfor -%}
{%- if not ns.found -%}

{{- '"[INST] <<SYS>>\n' + 'You are a helpful coding AI assistant. Answer in a
concise way.' + '\n<</SYS>>\n\n' -}}

{%- endif %}
{%- for message in messages %}
{%- if message['role'] == 'system' -%}
{{- '"[INST] <<SYS>>\n' + message['content'] + '\n<</SYS>>\n\n' -}}
{%- else -%}
{%- if message['role'] == 'user' -%}
{{-'' + message['content'] + ' [/INST] '-}}
{%- else -%}
{{-'' + message['content'] + ' </s><s>[INST] ' -}}
{%- endif -%}
{%- endif -%}

{%- endfor -%}

{%- if add_generation_prompt -%}
{{-""-1

{%- endif -%}

~

Send to negative
) prompt

Send to default Send to notebook

Chat template

{%- for message in messages %}

{%- if message['role'] == 'system' -%}
{{- message['content'] + '\n\n' -}}
{%- else -%}
{%- if message['role'] == 'user' -%}
{{- namel + ': ' + message['content'] + '\n'-}}
{%- else -%}
{{- name2 + ': ' + message['content'] + '\n' -}}
{%- endif -%}
{%- endif -%}

{%- endfor -%}

Command for chat-instruct mode
<|character | > gets replaced by the bot name, and <|prompt|> gets replaced by the regular chat prompt.

Continue the chat dialogue below. Write a single reply for the character "<|character|>".

<|prompt|>

EPUB/d54b79789f256b06895add7b5d466251db2aac42dcbd0dd7b487e27c.png
> ollama run codellama:13b-instruct
>>> plot a sine curve

Here is an example of plotting a sine curve in Python using the ‘matplotlib® library:

import matplotlib.pyplot as plt
import numpy as np

Generate a sine wave with a frequency of 1 Hz and an amplitude of 10
t = np.linspace(0, 10, 100)

x = np.sin(2 * np.pi * t)

Plot the sine wave

plt.plot(t, x)

plt.show()

This code will generate a sine wave with a frequency of 1 Hz and an amplitude of 10, and then plot
it using the ‘matplotlib® library. The resulting graph will look something like this:

I[Sine Wave](https://i.imgur.com/R5L2NqU.png)

You can adjust the frequency and amplitude by changing the values passed to the ‘np.linspace()"
function and the ‘np.sin()" function, respectively.

>>> Bend a message (/? for help)

EPUB/10657e0118dd0b08658db802e6e885d744f365212dd045b9a9eda37c.png
Chat

Default Notebook | Parameters | Model Training Session
Generation | Character Instruction template Chat history Upload character
Preset Filter by loader
LLaMA-Precise - [m [l m || o lama.cpp =
max_new_tokens (4096 2) | | mirostat.mode (o Truncate the prompt up to this | 5000 B Forces the model to never end the generation prematurely
— mode=1 s for llama.cpp only. length ey —
. The leftmost tokens are removedf the - -
= @ | | bromptexceedsthis ength. Most
temperature 0,01) models require this to be at most 2048. ¥ Activate text streaming
e mirostat_tau (5) -
 —————— — 2 V) —
—————— — Load grammar from file (gbnf)
top_p (095)) Maximum tokens/second ()
B mirostat_eta (01 To make text readable i real time. ‘ (e M ‘ ‘ L] ‘ ‘ = ‘ ‘ L] ‘
——_—
min_p (o =)
Seed (- for random) Maximum Ul updates/second o
L et thisifyou experience lag i the UI
Al 8
. = J || duing sreaming
— | —
- ————
) _—— Other parameters < | | custom stopping strings
epeiicnipenaty .+ B In addition to the defaults. Written between ™ and separated by comms.
—
ou
presence_penalty ())
— e e
Specific token IDs to ban from generating, comma-separated. The IDs
frequency_penalty (0 2) can be found in the Default or Notebook tab,
—
typical_p (1 <) ‘
. Grammar
s (1 =)
g

Learn more

EPUB/e443d280ee3bc5041491c20d81c49cdede8c7d18afb81e3347795a89.png
Model RAM Usage 10.66 GB

¥ Mstudio the bloke codellama| Clear Results -‘ Estimated RAM capacity: 18879 GB () | Estimated VRAM capacity: 1884GB () Community

Found | 13 | results on @ Hugging Face Hub [Sort: Most Likes ~ | [_Filter: Compatil
2 uaana pat TheBloke/Codel lama-13B-Instruct -GGUF

()
12 Available Files Fiter by: | Compatibilty Guess | 101

‘ Learn more about this Model on @ Il ‘

[TheBloke/Codellana-7B-Instruct -GGUF

o
< 95 & 208
September 27, 2023 (154 days ago) () codel1ana-13b-instruct Q2 K.gguf —
= [FULL GPU OFFLOAD POSSIBLE (D | [5.43GB_ | Download ©
MODELFILE) (02K @) —
[4 [) TheBloke/CodeLlana-7B-GGUF
< 90 & 201
September 27, 2023 (154 days ago) [codellama-13b-instruct.Q3_K_S.gguf S
oETHIE [FULL GPU OFFLOAD POSSIBLE (D | [5.66GB_ | Download ©
[TheBloke/Codel 1ama-34B-Instruct -GGUF
< 9% & 40
SEHEEr 27 AR) [codellama-13b-instruct.Q3_K_M.gguf S
[FULL GPU OFFLOAD POSSIBLE (0 | [634GB_ | Download ©
wioneL i€) (GEKGID) o
[TheBloke/CodeL Lama-348-GGUF
© 54 & 30
September 27, 2023 (154 days ago)
[codellama-13b-instruct.Q3_K_L.gguf S
| FULL GPU OFFLOAD POSSIBLE (0 | [693GB | | Download ©
[) TheBloke/CodeL 1ana-138-GGUF mope FiLe) (EERE0) e
047 war
September 27, 2023 (154 days ago)
[codellama-13b-instruct.Q4_0.gguf S
| FULL GPU OFFLOAD POSSIBLE (0 | [7.37GB | | Download ©
() TheBloke/Codel 1ama-78-Python-GGUF VooEL FiLE) (@01 Stithiael
4 aum
September 27, 2023 (154 days ago)
[codellama-13b-instruct.Q4_K_S.gguf S
T L e — oETHIE | FULL GPU OFFLOAD POSSIBLE (0 | [7.41GB | Download ©
< a2 & 62 __ _
January 31, 2024 (29 days ago)
[codellana-13b-instruct.Q4_K_M.gguf S
[) TheBloke/CodeL lama-78B-hf -GGUF. © 50] o 50 oETHIE | FULL GPU OFFLOAD POSSIBLE () | [7.87GB | Download @
January 30, 2024 (29 days ago) -
[codellama-13b-instruct.Q5_0.gguf S
(] TheBloke/Codel Lama-348-Python-GGUF rYT O | FULL GPU OFFLOAD POSSIBLE () | [897GB | | Download ©
September 27, 2023 (154 days ago) = MODELFLE | (@50 @)
[) TheBloke/CodeL 1ana-138-Python-GGUF [codel1ana-13b-instruct.Q5 K S.gguf —
cm 47 | FULL GPU OFFLOAD POSSIBLE (0 | [897GB | | Download ®

September 27, 2023 (154 days ago) “ VoDEL FLE | (XS @

[TheBloke/CodeL lama-76B-Python-GGUF [codellama-13b-instruct.Q5_K_M.gguf
02 was | FULL GPUOFFLOAD POSSIBLE (0 | [9.23GB | v Downloaded

Jnuary 31,2024 9 days 350) (oot Fi | (GEKGNIE)

[) TheBloke/CodeL lana-13B-0asst-sft-v10-GGUF reve g () codellana-13b-instruct.Q6_K.gguf ‘
September 27, 2023 (154 days ago) = _FULL GPU OFFLOAD POSSIBLE (D | (_10.68GB | Download ® |
& R VODEL FILE S
Learn more
® What's the difference between all these files? Which one should I download? >

v0.2.14

Model Downloads 0 downloading - 5 completed =

EPUB/de385dba569ac061938c4bb22a7505292b9db08870a98b479991be0c.png
RAM Usage 679.45 MB
CPU: 440%

| +New Chat (Ctrl+N) |) Export Model Info | Architecture Llama - _ Markdow Reset to Default Setting

® 2 X

W Eject Model

plot a sine curve

Danger Zone

import matplotlib.pyplot as plt
import numpy as np
System Prompt / Pre-Prompt 16 tokens

x = np.linspace(0, 2 * np.pi, 100) You are a helpful coding Al assistant. Answer in a
y = np.sin(x) ; concise way.

plt.plot(x, y)
plt.show() W Ask before overriding (1)

GPU Acceleration
¥ GPU Offload @

Detected GPU type (right click for options)
Nvidia CUDA

Context Length

codellama_codellam. .. supportsup to 16384 tokens.

Advanced Configuration v

Config for ‘plot a sine curve'

New Preset ® ExporttoJSON

Inference Parameters

Parameters that control various aspects of the
token prediction process

Output randomness

Tokens to generate ()

Top K Sampling @

W Repeat penalty O repeat_penalty
¥ Min P Sampling © -
¥ Top P Sampling © -
CPU Threads © n_threads

:Expon:assaeensbot‘ | QRegenemte| | B cContinue Prompt Format

Tools
USER [Enter a user message ... 0 tokens @
Model Inspector

) to send, shift + ¢J for new line)
Context Overflow Policy

v0.2.14 3 1 d: 19.07 tok/s completed ¢ > € k k 108/5000 Conversation Notes

Model Downloads 0 downloading = 5 completed

EPUB/e478215e97252c8c15c65fe47b350242403357cdce800fe657fda3a5.png
Chat Default Notebook Parameters

Past chats

L 20240229-10-26-48 -

— Warva
Rename w ‘ New
|_chat |

Model Training Session

plot a sine curve

import matplotlib.pyplot as plt
import numpy as np

X = np.linspace(@, 2 * np.pi, 100)
y = np.sin(x)

plt.plot(x, y)

plt.show()

¥ Show controls (Ctrl+S)

‘ Generate

= ‘L Send a message

Start reply with

‘ Sure thing!

Mode

template must match the current model.

Defines how the chat prompt is generated. In instruct and chat-instruct modes, the instruction template selected under Parameters > Instruction

‘ () chat J ‘ () chat-instruct W ‘ e instruct J

Character gallery

EPUB/099fccfb681cd747820aa0d3de2c395e6801a9983c086bfb3f7556e8.png
Chat Default Notebook Parameters Model Training Session
Model LoRA(s)
(.) save | [
codellama-13brinstruct Q5_K_M.gguf - || @ || 1oad | |unioad| |Reload | > -
L J settings| |
Moo Whether to load the model as soon s it is selected in the Model dropdown.
I Al () Autoload the model
lama.cpp - L J
. .| Download model or Lora
(Y (\ Enter the Hugging Face username/model path, for instance: facebook/galactica-125m. To specify a branch, add it at the end after a " character like this
n-gpu-layers 40 NVIDIA only: use lama:cpp-python compiled with tensor cores support. facebook/galactca-125m:main. To downioad asingle file, ente ts name in the second bos.

n_ctx
Context length. Try lowering this if you
run out of memory while loading the
model.

—

tensor_split
List o proportions to split the model across multiple GPUs. Example:
1817

n_batch (

threads. [

threads_batch [

alpha_value 1

This increases performance on RTX cards.

(] tensorcores

llama.cpp: Use llama-cpp-python compiled without GPU acceleration.
Transformers: use PyTorch in CPU mode.

O epu

Splitthe model by rows across GPUS. This may improve multi-gpu
performance.

() row_split

Do not offload the K, @,V to the GPU. This saves VRAM but reduces the
performance.

(1) no_offload_kqv.

Disable the mulmat kernels.

() no_mul_mat_q
() no-mmap
() mlock

NUMA support can help on some systems with non-uniform memory
access

() numa

Positional embeddings alpha factor
for NTK RoPE scaling, Recommended
values (NTKv1): 1.75 for 1.5x context,
2.5 for 2x context. Use either this or
compress_pos_emb, not both.

rope._freq base

If greater than 0, will be used instead
of alpha_value. Those two are related
by rope_freq_base = 10000 *

alpha value A (64 / 63)

—————— e

compress_pos_emb (1
Positional embeddings compression

factor. Should be set to (context

length)/ (models original context

length). Equal to 1/rope_freq scale.

 -—

1000000

Download Gt file list

Successfully loaded [codeT1ana-13b-instruct Q5 K M. gguf].

It seems to be an instruction-following model with template "Llama-v2". In the chat tab, instruct or chat-instruct modes should be used.

EPUB/2a8a5647c398547df7af5d0ee447b13c8355877ed3fab98be380feb6.png
> ollama run my13b-instruct:base
>>> plot a sine curve
Here is an example of how to plot a sine curve using Python's ‘matplotlib® library:

import matplotlib.pyplot as plt
import numpy as np

Generate a sine curve with 1000 points
x = np.linspace(0, 2 * np.pi, 1000)

y = np.sin(x)

Plot the sine curve

plt.plot(x, y)

plt.show()

This will generate a plot of the sine curve with 1000 points. You can adjust the number of points
by changing the value of 1000° in the “np.linspace’ function.

>>> Bend a message (/? for help)

