

Journal L'impact du LLM sur l'Open-Source

Posté par abriotde (site web personnel, Mastodon) le 19 septembre 2025 à 00:31.
Licence CC By‑SA.

Étiquettes :

	intelligence_artificielle

	open_source

	github

	grands_modèles_de_langage

	codage

	vibe_coding

[image:]

Sommaire

	

	Mon constat

	Conséquences

	Et au delà

	Conclusion

Les LLM, c'est bien connu, se sont en partie instruit en pompant largement le code open-source. Mais en retour, je me fais la réflexion que les LLM et tout spécialement la génération de code pourraient avoir un impact important sur l'ensemble du code open-source.

Mon constat

Il n'est plus à démontrer que les LLM impactent énormément le travail des informaticiens et tout spécialement le développement de logiciel. En effet, en quelques instruction, un LLM génère de petits programmes fonctionnels, parfois au prix de quelques aller-retours. Mais l'on peut faire bien plus mieux avec les agents et toucher aussi aux grosses bases de codes. J'ai très récemment découvert Manus et avec lui je lui donne mon repo Github, il le clone, trouve tout seul une configuration de test et me résout 1 à 1 tous mes problèmes, il ajoute toutes les fonctionnalités voulu. Bon ok, il faut encore qu'à la main j'ajuste quelques détails mais c'est sans doute en partie car j'ai la version gratuite. Il y a toujours besoin d'avoir une compréhension du codage et technique, mais clairement, pour le soft sur lequel je travail, je suis novice sur le framework et il me trouve des plugins avancés que je n'aurais jamais été cherché seul. Résultat, le rendu final est meilleur, plus rigoureux et plus sécurisé mais aussi plus complexe et lourd (En gros, moi j'aurais fait un select, il utilise un ORM, je n'aurais pas checké aussi bien tous les champs…).

Conséquences

Cela a un impact sur le code que je produit, globalement plutôt en bien même si aussi, il peut s'y glisser du code impropre (malware? plus surement du code mort ou inefficace). Et ce code va se retrouver dans mon dépôt, puisque c'est un soft open-source.

On va donc voir sans doute de moins en moins de code simple à l'arrache car clairement, si certains développeurs l'utilisent avec parcimonie, ce n'est pas le cas des néophites. D'ailleurs quel intérêt y aurait-il à rendre open-source votre utilitaire qui tiens en 1000 lignes de code dans un seul fichier quand avec une simple description, n'importe qui peut le refaire?

Et retour à l'envoyeur, on va pour autant, sans doute voir de plus en plus de logiciels open-sources. Ils seront de bonne qualités mais aussi relativement mal conçu. J'entends par là, que comme c'est facile à faire, plus de monde va sortir son logiciel pour son besoin mais ne va pas chercher à en faire une bonne brique simple, configurable et adaptable. Dis autrement, faire un serveur web, c'est assez facile. Mais faire un serveur web comme Apache capable de faire tourner PHP, Java ou d'autres, capable de faire proxy ou reverse-proxy d'une simple configuration et même capable d'en faire plusieurs en même temps, c'est autrement plus complexe à concevoir. Et d'un autre côté, pourquoi faire un outils qui sert à tout quand on trouve tous les outils séparément? Cela ne saute pas aux yeux, mais l'intérêt est immense d'avoir un Linux qui boot sur tous les PC et serveurs et même sur l'embarqué. C'est plus simple a retenir et plus simple à trouver.

Ironie de l'histoire, dans cette profusion, ce sera difficile de s'y retrouver alors on sera sans doute dépendant des suggestion d'un LLM pour trouver le logiciel qui fait ce que l'on veut faire. Et on le saura d'autant plus que l'on aura sans doute perdu en partie les compétences pour comprendre l'ensemble du problème et des solutions possible. Moi même, pour créer mon logiciel, j'ai voulu partir d'un logiciel open-source et j'ai demandé à un LLM.

Cette complexification croissante, me fait penser, qu'avant internet, la doc qu'on disposait pour coder tenait dans le man pour C, et dans la Javadoc que l'on avait téléchargé pour Java. Forcément, on utilisait pas 36 dépendances dont on avait pas autant connaissance. Les soft était simple et pourtant l'assembleur était déjà devenu trop compliqué (CISC remplaçait RISC avec des jeux d'instruction allongés et paramètres à rallonge).

Et au delà

Pour aller plus loin, j'aimerais reprendre la discution que j'ai lancé ici. Clairement le langage de programmation ne disparaitra pas car c'est le seul moyen de définir un logiciel de manière précise. Cependant il est évident que l'on ne rentrera plus autant dans le code un peu comme les mécaniciens ne rentrent plus dans les détails du moteur, ils changent toute la pièce défaillante. D'ailleurs les informaticiens eux même ne rentrent plus dans l'Assembleur (sauf très rare exceptions). Par contre je ne crois pas que l'on va continuer à s'ammuser à multiplier les langages de programmations sans un intérêt technique clair. J'entends par là, que certes Rust par exemple apporte une vrai sécurité en plus, surtout si c'est un LLM qui programme. Mais bon nombre de langages ne sont là que car ils sont "sympa" : un paradygme différent pour exprimer plus simplement les choses, une syntaxe plus explicite, tout ce dont on se fiche pour un LLM. Un peu comme on a arrêter de sélectionner les cheveaux de traits (on les garde pour le patrimoine et de très rare usages).

Bien sûr cela ne veut pas dire qu'il n'y aura pas des gens à s'amuser à en creer comme certains crée des ordinateur dans des jeux mais cela n'a aucun intérêt pratique.

Conclusion

Je me restreint, car le sujet est vaste et je suis tenté de détailler plus au risque de décourager le lecteur. Je ne doute pas que les commentaires seront passionnés, mais on en a besoin ;) . L'IA va changer le monde et sans doute affecté notre monde open-source. J'espère seulement qu'elle ne se fera pas au détriment de notre idéal.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

