

Journal Migration d'une infra lamp vers docker

Posté par albang le 17 février 2015 à 12:39.
Licence CC By‑SA.

Étiquettes :

	docker

	lamp

	consul

[image:]

Sommaire

	
	Intro

	
L'infra
	DockerFile

	la conf Apache

	
Le apache "Wordpress"
	DockerFile

	la conf apache

	
Data only container
	DockerFile

	
Mysql
	DockerFile

	
Fig
	fig.yaml

Intro

Lecteur de linuxfr depuis un bon bout de temps, voici ma première contribution.

Dans cet article, je vous montrerai comment j'ai migré un site web qui tournait sur un serveur dédié vers docker en isolant chaque service dans un container

L'infra

Elle est constituée d'un serveur web avec quelques sites web et d'un serveur mysql.

Pour coller avec la philosophie docker, j'ai isolé chaque site web dans un container.

L'idée est de facilement pouvoir migrer un site web sans impacter le reste.

l'infra est constituée de :

	 un container reverse-proxy Apache qui va orienter les requêtes vers les différents sites web

	 un container apache qui va servir le WordPress

	 un container data où le contenu du WordPress sera stocké

	 un container Mysql où sera hébergée la base de données
[image: schema docker]
Le reverse proxy

Pourquoi utiliser un reverse proxy ?

il est nécessaire de lier un port d'un container à un port de la machine hôte pour que le container soit joignable de l’extérieur.

Si je décide de lancer deux containers de site web, seul le premier pourra être lié au port 80 (port standard pour le HTTP).

Le second devra être lié à un autre port.

C'est techniquement faisable mais très peu pratique.

Pour remédier à cela, j'ai créé un container jouant le role de reverse-proxy.

Ce container est lié au port 80 de la machine hôte et il va jouer le rôle de "passe plat".

Il va rediriger les requêtes sur les container adéquat grâce au nom de serveur demandé (directive servername) dans les requêtes http.

Le reverse proxy n'existait pas dans ma précédente infra car tous les sites étaient sur le même Apache.

DockerFile

FROM ubuntu:14.04
MAINTAINER Alban Garrigue <aban@garrigue.me>

RUN apt-get update
RUN apt-get install -y apache2

RUN a2enmod proxy
RUN a2enmod proxy_http

ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR /var/log/apache2
ADD ./alban.garrigue.me.conf /etc/apache2/sites-available/
RUN a2ensite alban.garrigue.me.conf
ENV APACHE_PID_FILE /var/run/apache2.pid
ENV APACHE_RUN_DIR /var/run/apache2
ENV APACHE_LOCK_DIR /var/lock/apache2

RUN mkdir -p $APACHE_RUN_DIR $APACHE_LOCK_DIR $APACHE_LOG_DIR

ADD ./alban.garrigue.me.conf /etc/apache2/sites-available/
RUN a2ensite alban.garrigue.me.conf
RUN a2dissite 000-default.conf

ENTRYPOINT ["/usr/sbin/apache2"]
CMD ["-D", "FOREGROUND"]

la conf Apache

<VirtualHost *:80>
 ServerName alban.garrigue.me
 ProxyPreserveHost On
 ProxyRequests off
 ProxyPass / http://alban.garrigue.me/
 ProxyPassReverse / http://alban.garrigue.me/
</VirtualHost>

Le apache "Wordpress"

DockerFile

FROM ubuntu:14.04
MAINTAINER Alban Garrigue <aban@garrigue.me>

#RUN apt-get update
RUN apt-get update && apt-get install -y apache2 php5 php5-mysql

ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR /var/log/apache2
ENV APACHE_PID_FILE /var/run/apache2.pid
ENV APACHE_RUN_DIR /var/run/apache2
ENV APACHE_LOCK_DIR /var/lock/apache2

RUN mkdir -p $APACHE_RUN_DIR $APACHE_LOCK_DIR $APACHE_LOG_DIR

ADD ./alban.garrigue.me.conf /etc/apache2/sites-available/
RUN a2ensite alban.garrigue.me.conf
RUN a2dissite 000-default.conf
RUN a2enmod rewrite
RUN a2enmod expires
RUN a2enmod headers
RUN a2enmod cgi

EXPOSE 80
ENTRYPOINT ["/usr/sbin/apache2"]
CMD ["-D", "FOREGROUND"]

la conf apache

La conf apache est assez standard

<VirtualHost *:80>
 DocumentRoot /var/www/alban.garrigue/
 ServerName alban.garrigue.me
 <Directory /var/www/alban.garrigue>
 Options FollowSymLinks MultiViews
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>

<Directory /var/www/alban.garrigue/blog>
 Options FollowSymLinks
 AllowOverride All
</Directory>
</VirtualHost>

Ce que j'ai du changer dans les fichiers de configuration du WordPress:

	 L'adresse de la base de données dans le wp-config.php

	 changer 127.0.0.1 par dbalban (à voir dans le fig.yaml)

Data only container

Le concept de container de données est relativement simple.

On ajoute des données à l'image, puis on les expose avec un volume.

L'avantage de ce type de container est qu'ils n'ont pas besoin de tourner pour que les autres aient accès à leur données.

Cependant il ne bénéficie pas du système de fichier unionfs et les données ne sont pas incluses dans la sauvegarde du container.

Pour sauvegarder ces données:

sudo docker run -rm --volumes-from DATA -v $(pwd):/backup busybox tar cvf /backup/backup.tar /data

Pour restaurer les données:

sudo docker run -rm --volumes-from DATA2 -v $(pwd):/backup busybox tar xvf /backup/backup.tar

source: Stackoverflow

Vous voyez ci dessous qu'il n'y a rien de compliqué.

DockerFile

FROM stackbrew/busybox:latest
MAINTAINER Tom Offermann <tom@offermann.us>

Create data directory
#RUN mkdir /var/www/
ADD alban.garrigue /var/www/alban.garrigue
Create /data volume
VOLUME /var/www/

Mysql

Je me suis basé sur ce dépôt github

Ce que j'ai modifié dans le DockerFile:

	Ajout dump sql pour charger la base

	Ajout du login/mot de passe du compte wordpress en variables d'environnement

	Ajout du path de mon dump sql pour l'import

DockerFile

ADD wordpress-alban.sql /tmp/wordpress-alban.sql
Exposed ENV
ENV MYSQL_USER <user>
ENV MYSQL_PASS <mot de passe>
ENV STARTUP_SQL /tmp/wordpress-alban.sql

Fig

Fig.sh permet d'orchestrer le lancement des containers et de les lier entre eux

il va résoudre les liens de dépendances pour trouver le bon ordonnancement.

Les links vont servir de liens entre les containers en utilisant les fichiers /etc/hosts.

Ainsi il faut faire abstraction des adresses IP et raisonner en nom de container.

Le fichier fig.yaml permet de lancer clairement des containers avec des options spécifiques.

Personnellement je trouve ça plus clair qu'une ligne de commande à rallonge.

fig.yaml

reverse:
 image: reverse-proxy
 ports:
 - "80:80"
 links:
 - webalban:alban.garrigue.me

webalban:
 image: alban-garrigue-apache
 volumes_from:
 - webalbanstockage
 links:
 - dbalban

dbalban:
 image: alban-garrigue-mysql

webalbanstockage:
 image: alban-garrigue-data

Résumé :

Ça serait vous mentir si je vous dis que tout cela est tombé sous le sens du premier coup.

J'ai eu du mal à comprendre la persistance des données, les concepts d'images et de containers.

Les containers sont le résultat de l'instanciation d'une image.

Les données à l’intérieur sont aussi pérennes que le container.

Le container est arrêtable et redémarrable, si votre docker plante tout n'est pas perdu.

Cependant si vous ré-instanciez l'image, vous ne bénéficierez pas des données du conteneur précédent.

Les topics de stack overflow sont une source d'information précieuse.

Tout ce petit monde avance très vite et de nombreux outils se développent.

Je vais prochainement tester :

weave qui permet de gérer la partie réseau inter container et multi host (intéressant)

consul qui fait de la découverte de service

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/00614c1a68d0c8bb5f1244388f54a68ff9f1d780f241ab407303b944.png
Infrastructure docker 1.0

alban.garrigue.me.conf alban.garrigue.me.conf

Montage du volume de Volume : Avar/www
limage alban-garrigue-

data:
surle répertoire :
Narfiwww

WORDPRESS-DB

