

Journal Rustic Markup Language : Le QML du très très pauvre !

Posté par Aldebaran (site web personnel) le 25 septembre 2025 à 11:16.
Licence CC By‑SA.

Étiquettes :

	gui

	rust

[image:]

Et salut à tous !

J'avais envie de présenter ce projet depuis un moment sans en trouver le temps; je me suis lancé dans un petit projet pour progresser un peut en rust, un genre de QML.

Je l'ai appelé RML avec beaucoup d'humidité.

Le rendu est fait grâce à macroquad (que je recommande, c'est vraiment ultra complet comme lib de rendu 2D [et même 3D]).

Pour le cœur j'ai fait un arena tree pour stocker les noeuds de mon ihm, avec quelques méthodes métiers, un système de propriétés abstraites, un système d'events (je remap d'ailleurs les events système dedans) et enfin une bonne grosse macro pour parser mon DSL.

Le DSL supporte la déclaration d'élements (Rectangle, Text, Node, MouseArea), la définitions de signaux, de callback, de fonctions et de propriétés (qui peuvent être initialisées par des fonctions ou par des valeurs). On peut aussi importer des composants depuis un répertoire contenant des .rml .

Pour les callback et les fonctions, je n'ai pas implémenté de langage interprété, c'est du rust natif, avec une petite transformation (un peu bancale) pour passer d'une notation $noeud.propriété.

Pour positionner les éléments, on a le choix entre du positionnement relatif au parent (en modifiant x et y), ou bien via un système d'ancre et de marges.

C'est très loin de ce que propose Slint, Ribir, ou bien son inspiration, le QML bien sur.

Mais je me suis presque étonné de voir qu'avec au final assez peu de code, on pouvait obtenir un truc relativement fonctionnel.

Voilà ce que ça donne :

 let mut engine = rml!(
 import "components" as UI

 Node {
 id: root
 anchors: fill
 text: "Please don't hit my button!"

 signal click

 on_click: {
 $.root.text = "outch!".to_string();
 }

 Rectangle {
 anchors: fill
 margins: 10
 color: { GRAY }
 }

 Text {
 anchors: center
 text: { $.root.text }
 color: { WHITE }
 font_size: 16
 }

 UI::Button {
 id: test_btn
 anchors: center | bottom
 margins: 20
 text: "Click me!"
 on_click: {
 emit!(engine, root, click);
 }
 }
 }
);

Bref, voilà le lien : https://github.com/aldebaranzbradaradjan/rml

Si une bonne âme qui s'y connaît en DSL et macro Rust veut bien me donner un coup de main c'est là dessus que j'ai fait le code le plus sale.

La macro en elle même est relativement propre, mais je passe par des phases de transformation en chaîne de caractères et il y a pas mal de limitations.

J'espère que vous trouverez le projet sympa, moi je me suis bien amusé à le développer !

+++

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars285067000avatar.jpg

