

Journal Un print(1 + "3a"), ça nous inspire comment ?

Posté par anaseto le 01 avril 2017 à 13:53.
Licence CC By‑SA.

Étiquettes :
aucune

[image:]

Sommaire

	
Veux‐tu faire un print(1 + "3a"), s’il te plaît ?
	Ceux qui te rejettent à l’exécution parce que Num + String, quoi

	Ceux qui te rejettent à l’exécution, mais parce que « a » dans "3a"

	Ceux qui essaient de te comprendre

	Ceux qui te rejettent à la compilation

Cher Nal,

Comme il faut bien un minimum de contenu sérieux aujourd’hui, histoire de faire diversion, je vais te parler de mes recherches sur la problématique print(1 + "3a"). Chaque langage/compilateur a sa façon de réagir sur le sujet, sa sensibilité, ses opinions ; des fois c’est juste une question de style, d’autres fois c’est des questions plus profondes qui émergent !

Voici donc les fruits de ces recherches.

Veux‐tu faire un print(1 + "3a"), s’il te plaît ?

Ceux qui te rejettent à l’exécution parce que Num + String, quoi

Ruby 1.8, c’est le point de vue coercition de types :

$ ruby18 -e 'puts 1 + "3a"'
-e:1:in `+': String can't be coerced into Fixnum (TypeError)
 from -e:1

Avec Python, on a droit à la perspective de la surcharge d’opérateur :

$ python -c 'print(1 + "3a")'
Traceback (most recent call last):
 File "<string>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Pour Racket, c’est est une question bureaucratique de contrat non respecté !

$ racket -e '(printf "~s\n" (+ 1 "3a"))'
+: contract violation
 expected: number?
 given: "3a"
 argument position: 2nd
 other arguments...:
 1

Guile, avare en paroles, se plaint d’un point de vue typage, tout en pointant le vilain "3a" du doigt cependant :

$ guile -c '(display (+ 1 "3a"))'
ERROR: In procedure +:
ERROR: Wrong type: "3a"

Avec Common Lisp (sbcl), on a droit à des hurlements, on a fait une erreur simple de typage ! Et les remontrances n’en finissent pas…

$ sbcl --noinform --non-interactive --eval '(print (+ 1 "3a"))'
Unhandled SIMPLE-TYPE-ERROR: Argument Y is not a NUMBER: "3a"

Backtrace for: #<SB-THREAD:THREAD "main thread" RUNNING {1002C06753}>
0: ((LAMBDA NIL :IN SB-DEBUG::FUNCALL-WITH-DEBUG-IO-SYNTAX))
1: (SB-IMPL::CALL-WITH-SANE-IO-SYNTAX #<CLOSURE (LAMBDA NIL :IN SB-DEBUG::FUNCALL-WITH-DEBUG-IO-SYNTAX) {1002C193FB}>)
2: (SB-IMPL::%WITH-STANDARD-IO-SYNTAX #<CLOSURE (LAMBDA NIL :IN SB-DEBUG::FUNCALL-WITH-DEBUG-IO-SYNTAX) {1002C193CB}>)
3: (PRINT-BACKTRACE :STREAM #<SYNONYM-STREAM :SYMBOL SB-SYS:*STDERR* {10001528B3}> :START 0 :FROM :INTERRUPTED-FRAME :COUNT NIL :PRINT-THREAD T :PRINT-FRAME-SOURCE NIL :METHOD-FRAME-STYLE NIL)
4: (SB-DEBUG::DEBUGGER-DISABLED-HOOK #<SIMPLE-TYPE-ERROR expected-type: NUMBER datum: "3a"> #<unavailable argument>)
5: (SB-DEBUG::RUN-HOOK *INVOKE-DEBUGGER-HOOK* #<SIMPLE-TYPE-ERROR expected-type: NUMBER datum: "3a">)
6: (INVOKE-DEBUGGER #<SIMPLE-TYPE-ERROR expected-type: NUMBER datum: "3a">)
7: (ERROR SIMPLE-TYPE-ERROR :DATUM "3a" :EXPECTED-TYPE NUMBER :FORMAT-CONTROL "~@<Argument ~A is not a ~S: ~2I~_~S~:>" :FORMAT-ARGUMENTS (SB-KERNEL::Y NUMBER "3a"))
8: (SB-KERNEL:TWO-ARG-+ 1 "3a")
9: (+ 1 "3a")
10: (SB-INT:SIMPLE-EVAL-IN-LEXENV (+ 1 "3a") #<NULL-LEXENV>)
11: (SB-INT:SIMPLE-EVAL-IN-LEXENV (PRINT (+ 1 "3a")) #<NULL-LEXENV>)
12: (EVAL (PRINT (+ 1 "3a")))
13: (SB-IMPL::PROCESS-EVAL/LOAD-OPTIONS ((:EVAL . "(print (+ 1 \"3a\"))") (:QUIT)))
14: (SB-IMPL::TOPLEVEL-INIT)
15: ((FLET #:WITHOUT-INTERRUPTS-BODY-83 :IN SAVE-LISP-AND-DIE))
16: ((LABELS SB-IMPL::RESTART-LISP :IN SAVE-LISP-AND-DIE))

unhandled condition in --disable-debugger mode, quitting

jq nous dit que ce qu’on lui demande est tout simplement impossible :

$ echo {} | jq '1 + "3a"'
jq: error (at <stdin>:1): number (1) and string ("3a") cannot be added

Pour K (kona), c’est une erreur de type pour +, mais on n’en saura pas plus.

$ k
K Console - Enter \ for help

 1 + "3a"
type error
1 + "3a"
 ^

J voit là un problème de domaine et nous rajoute des espaces quelque part là où ça coince :

$ jc
 1 + '3a'
|domain error
| 1 +'3a'

Ceux qui te rejettent à l’exécution, mais parce que « a » dans "3a"

Perl 6 voudrait bien essayer de nous faire plaisir, mais avec le « a » après le « 3 », c’est au‐dessus de ces capacités et il nous l’explique avec Unicode à l’appui :

$ perl6 -e 'say 1 + "3a"'
Cannot convert string to number: trailing characters after number in '3⏏a' (indicated by ⏏)
 in block <unit> at -e line 1

Actually thrown at:
 in block <unit> at -e line 1

TCL ne peut pas non plus, mais fait preuve d’un style plus stacktrace, en nous montrant petit à petit le code de la commande englobante :

$ cat main.tcl
puts [expr 1+{3a}]
$ tclsh8.5 main.tcl
can't use non-numeric string as operand of "+"
 while executing
"expr 1+{3a}"
 invoked from within
"puts [expr 1+{3a}]"
 (file "main.tcl" line 1)

Lua 5.2 essaie aussi, mais n’y arrive pas. Un peu plus sérieux dans le ton :

$ lua52 -e 'print(1 + "3a")'
lua52: (command line):1: attempt to perform arithmetic on a string value
stack traceback:
 (command line):1: in main chunk
 [C]: in ?

Avec le Shell, c’est expéditif :

$ expr 1 + "3a"
expr: non-numeric argument

Ceux qui essaient de te comprendre

Perl 5 sent bien que c’est louche et te le fait savoir, mais se débrouille pour trouver 4 à la fin.

$ perl -wE 'say 1 + "3a"'
Argument "3a" isn't numeric in addition (+) at -e line 1.
4

AWK (BWK awk), trop fort, arrive à faire le calcul sans problèmes :

$ awk 'END{print 1 + "3a"}' /dev/null
4

JavaScript (node), rebelle, fait son original :

$ node -e 'console.log(1 + "3a")'
13a

C n’essaye pas vraiment de comprendre ce que tu voulais faire, mais ne veut pas trop te mettre la pression non plus :

$ cat main.c
#include <stdio.h>

int main(void) {
 printf("%d", 1 + "3a");
 return 0;
}
$ gcc -Wall main.c
main.c: In function 'main':
main.c:4: warning: format '%d' expects type 'int', but argument 2 has type 'char *'
$ clang -Wall main.c
main.c:4:15: warning: format specifies type 'int' but the argument has type 'char *' [-Wformat]
 printf("%d", 1 + "3a");
 ~~ ^~~~~~~~
 %s
1 warning generated.
$./a.out
289409602

Ceux qui te rejettent à la compilation

Go, ça parle simplement typage, mais il pointe le vilain du doigt :

$ cat main.go
package main

import "fmt"

func main() {
 fmt.Println(1 + "3a")
}
$ go run main.go
command-line-arguments
./main.go:6: cannot convert "3a" to type int
./main.go:6: invalid operation: 1 + "3a" (mismatched types int and string)

Avec OCaml, on parle typage, mais ça parle d’expressions, on sent l’esprit système de typage dans le style :

$ cat main.ml
let () = print_int (2 + "3a")
$ ocaml main.ml
File "main.ml", line 1, characters 24-28:
Error: This expression has type string but an expression was expected of type
 int

Pour Haskell (à tryhaskell.org), c’est une question de manque d’instance pour une typeclass, sa façon de parler surcharge d’opérateur :

λ print (1 + "3a")
No instance for (Num [Char]) arising from a use of ‘+’
In the first argument of ‘print’, namely ‘(1 + "3a")’
In the expression: print (1 + "3a")

Rust parle traits, sa façon de parler surcharge, avec au passage quelques histoires de macros pour faire peur aux enfants. Et il nous dit qu’on peut avoir plus de détails en lui posant des questions au sujet d’E0277 (qui vaut le détour, ceci dit : un peu la même idée que perldiag, mais dans un style pédagogique).

$ cat main.rs
fn main() {
 println!("{}", 1 + "3a");
}
$ rustc main.rs
main.rs:2:20: 2:28 error: the trait bound `_: std::ops::Add<&str>` is not satisfied [E0277]
main.rs:2 println!("{}", 1 + "3a");
 ^~~~~~~~
<std macros>:2:25: 2:56 note: in this expansion of format_args!
<std macros>:3:1: 3:54 note: in this expansion of print! (defined in <std macros>)
main.rs:2:5: 2:30 note: in this expansion of println! (defined in <std macros>)
main.rs:2:20: 2:28 help: run `rustc --explain E0277` to see a detailed explanation
main.rs:2:20: 2:28 help: the following implementations were found:
main.rs:2:20: 2:28 help: <f64 as std::ops::Add>
main.rs:2:20: 2:28 help: <&'a f64 as std::ops::Add<f64>>
main.rs:2:20: 2:28 help: <f64 as std::ops::Add<&'a f64>>
main.rs:2:20: 2:28 help: <&'b f64 as std::ops::Add<&'a f64>>
main.rs:2:20: 2:28 help: and 58 others
error: aborting due to previous error

Voilà, c’est tout.

P.-S. : Pour ceux qui recherchent des choses à lire plus dans l’esprit du jour, il y a cet article de chez TuxFamily que j’ai trouvé pas mal.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

