

Journal [Btrfs et openSUSE] Épisode 4 : le transfert de sous-volume

Posté par AR7 (site web personnel) le 03 septembre 2017 à 22:20.
Licence CC By‑SA.

Étiquettes :

	btrfs

	opensuse

	sauvegarde

	incrémentale

	debian

	selinux

	uuid

[image:]

Sommaire

	
La base
	Btrfs sait faire plein de trucs

	Au commencement, l'instantané

	Mon premier transfert

	
L'incrémental
	L'option -p : définir un parent

	L'option -c : définir des clones

	Une affaire de famille

	
La suite
	
La restauration
	Ça s'en va et ça revient…

	Des soucis avec GRUB ?

	Interrompre et reprendre un transfert

	Comparer des instantanés

	Liens

[image: Btrfs is hard]

« Btrfs et openSUSE » est une série de journaux sur le système de fichiers Btrfs, basée sur ma propre expérience d'utilisateur d'openSUSE. Au menu :

	des généralités sur Btrfs ☑

	des noms qui pètent : sous-volumes, snapshots, rollbacks ☑

	du snapper ☑

	du grub ☑

	de la mise à jour incrémentale

	des quotas

	de la maintenance ☑

	des trucs spécifiques à openSUSE

	des tentatives désespérées pour rester applicable à d'autres distributions

	des erreurs (pas taper)

	des bugs

	des cris

	des larmes

	et bien plus ! ou bien moins

Aujourd'hui, l'épisode 4 : le transfert de sous-volumes.

Note : cette épisode s'inspire de cet article que j'ai publié sur le forum Alionet.

La base

Btrfs sait faire plein de trucs

Parmi les fonctionnalités de Btrfs, il y en a une que je trouve particulièrement intéressante : le transfert de sous-volume, c'est-à-dire la copie d'un sous-volume en lecture seule d'un système de fichiers à un autre.

[image: multifonction]

À quoi ça sert ?

Cela permet par exemple de faire des sauvegardes de ses instantanés plutôt que de les garder à même le système de fichiers d'origine.

Mieux encore, il est possible d'envoyer uniquement les différences entre deux snapshots. Cela permet de faire de la sauvegarde incrémentale. Un peu comme avec rsync mais en plus efficace, en particulier pour des systèmes de fichiers de grande taille. Du moins, selon les auteurs de Btrfs.

La fonctionnalité a été introduite dans la version 3.16 du noyau Linux et est considérée comme stable.

Au commencement, l'instantané

J'ai créé un premier snapshot de mon /. Ou snapper l'a créé pour moi :

~# # On peut aussi utiliser snapper ls
~# btrfs subvolume list -s /
ID 259 gen 985 top level 258 path @/.snapshots/1/snapshot # ça, c'est le sous-volume par défaut
ID 286 gen 171 top level 258 path @/.snapshots/2/snapshot # le snapshot que j'ai créé
#

Je voudrais transférer ce cliché (n°2) sur un disque dur externe, histoire d'être un peu plus rassuré. Et aussi histoire de pouvoir ensuite le supprimer de mon disque dur interne si jamais je manque de place.

J'ai donc créé une partition en Btrfs sur mon disque dur externe, que j'ai montée sur /mnt. Sur cette partition, rien :

~# btrfs subvolume list /mnt
~# btrfs subvolume get-default /mnt/
ID 5 (FS_TREE)
~#

Bien, allons-y.

Mon premier transfert

C'est hyper simple.

~# # Je me crée un petit dossier de destination sur mon disque dur externe
~# mkdir -p /mnt/2
~#
~# # La commande suivante est magnifique
~# btrfs send /.snapshots/2/snapshot | btrfs receive /mnt/2
At subvol /.snapshots/2/snapshot/
At subvol snapshot
~#
~# # Le sous-volume apparaît bien de l'autre côté
~# btrfs subvolume list /mnt
ID 262 gen 80 top level 257 path 2/snapshot
~# tree -L 2 /mnt/2
/mnt/2
└── snapshot
 ├── bin
 ├── boot
 ├── dev
 ├── etc
 ├── lib
 ├── lib64
 ├── mnt
 ├── proc
 ├── root
 ├── run
 ├── sbin
 ├── selinux
 ├── sys
 ├── usr
 └── var
~#

btrfs send crée un flux d'instructions pour reconstruire l'instantané.
btrfs receive reçoit ce flux et l'exécute sur /mnt.

C'est beau.

[image: manifaik]

Je peux aussi copier le fichier /.snapshots/2/info.xml, au cas où je veuille plus tard utiliser snapper pour faire une restauration :

~# cp /.snapshots/2/info.xml /mnt/2
~#

L'incrémental

L'option -p : définir un parent

Le temps a passé. J'ai pris un deuxième instantané. Il porte le numéro 3 :

~# btrfs subvolume list -s /
ID 259 gen 985 top level 258 path @/.snapshots/1/snapshot
ID 286 gen 171 top level 258 path @/.snapshots/2/snapshot
ID 293 gen 377 top level 258 path @/.snapshots/3/snapshot # c'est lui !
~#

Je veux faire la même chose mais j'ai quand même regardé le manuel alors je fais un peu différemment :

~# # Je crée un petit dossier de destination sur mon disque dur externe
~# mkdir -p /mnt/3
~#
~# # Utilisons l'option -p
~# btrfs send -p /.snapshots/2/snapshot /.snapshots/3/snapshot/ | btrfs receive /mnt/3
At subvol /.snapshots/3/snapshot/
At subvol snapshot
~#

C'est beaucoup plus rapide ! Et puis j'ai l'accès aux deux snapshots en entier, comme pour les originaux :

~# btrfs subvolume list /mnt
ID 262 gen 80 top level 257 path 2/snapshot
ID 265 gen 80 top level 257 path 3/snapshot
~# tree -L 3 /mnt
├── 2
│ └── snapshot
│ ├── bin
│ ├── boot
│ ├── dev
│ ├── etc
│ ├── lib
│ ├── lib64
│ ├── mnt
│ ├── proc
│ ├── root
│ ├── run
│ ├── sbin
│ ├── selinux
│ ├── sys
│ ├── usr
│ └── var
└── 3
 └── snapshot
 ├── bin
 ├── boot
 ├── dev
 ├── etc
 ├── lib
 ├── lib64
 ├── mnt
 ├── proc
 ├── root
 ├── run
 ├── sbin
 ├── selinux
 ├── sys
 ├── usr
 └── var
~#

En fait, l'option -p demande à btrfs send de supposer que le sous-volume indiqué (/.snapshots/2/snapshot) est le sous-volume parent du sous-volume à envoyer (/.snapshots/3/snapshot). Ainsi, btrfs send n'enverra que les instructions pour transformer le sous-volume parent (/.snapshots/2/snapshot) en le sous-volume voulu (/.snapshots/3/snapshot).

De son côté, btrfs receive, à la réception du flux, fera un snapshot du sous-volume qui correspond à celui indiqué comme parent (/mnt/3/snapshot = /.snapshots/3/snapshot) puis le remplira petit à petit en suivant les instructions du flux.

L'option -c : définir des clones

[image: clone]

Il existe une autre option que le -p pour le transfert incrémental : -c.

-c permet comme -p de spécifier un sous-volume qui partage des données avec le sous-volume à envoyer mais contrairement à -p :

	l'option peut être répétée (on peut spécifier plusieurs sous-volumes) ;

	le sous-volume indiqué ne sera pas forcément utilisé comme parent à la réception.

L'option -c paraît donc utile pour des données afin de minimiser encore davantage les données à émettre par le send, par exemple quand il y a des cp --reflinks qui ont été faits entre les sous-volumes.

Exemple :

~# # Création d'un sous-volume de test
~# btrfs subvolume create /test
Create subvolume '//test'
~# cd /test
~#
~# # On crée un gros fichier 'a' (160 Mio) et on prend un cliché ('.1')
~# dd if=/dev/urandom of=a bs=4k count=40k
40960+0 enregistrements lus
40960+0 enregistrements écrits
167772160 bytes (168 MB, 160 MiB) copied, 0,799502 s, 210 MB/s
~# btrfs subvolume snapshot -r . .1
Create a readonly snapshot of '.' in './.1'
~#
~# # On supprime 'a', on crée 'b' (80 Mio) et on prend un cliché ('.2')
~# rm a
~# dd if=/dev/urandom of=b bs=4k count=20k
20480+0 enregistrements lus
20480+0 enregistrements écrits
83886080 bytes (84 MB, 80 MiB) copied, 0,400634 s, 209 MB/s
~# btrfs subvolume snapshot -r . .2
Create a readonly snapshot of '.' in './.2'
~#
~# # On restaure 'a' depuis '.1', on crée 'c' (40 Mio) et on prend un cliché ('.3')
~# cp --reflink .1/a . # on restaure a
~# dd if=/dev/urandom of=c bs=4k count=10k
10240+0 enregistrements lus
10240+0 enregistrements écrits
41943040 bytes (42 MB, 40 MiB) copied, 0,202652 s, 207 MB/s
~# btrfs subvolume snapshot -r . .3
Create a readonly snapshot of '.' in './.3'
~#
~# # On a donc trois snapshots : /test/.{1..3}
~# # Regardons un peu ce qu'il me coûterait d'envoyer '.3'…
~#
~# # … si c'était un premier transfert
~# btrfs send .3 | wc -c
At subvol .3
293787573 # 280 Mio : 'a' (160 Mio) + 'b' (80 Mio) + 'c' (40 Mio). Logique.
~#
~# # … si c'était un transfert incrémental par rapport à la version la plus récente
~# btrfs send -p .2 .3 | wc -c
At subvol .3
209848255 # 200 Mio : 'a' + 'c'. Et oui, '.2' ne contient pas 'a'…
~#
~# # … si c'était un transfert incrémental par rapport à la version la plus ancienne
~# btrfs send -p .1 .3 | wc -c
At subvol .3
125909800 # 120 Mio : 'b' + 'c'. Finalement, c'est plus avantageux d'utiliser '.1' que '.2'.
~#
~# # … si c'était un transfert incrémental par rapport aux deux versions
~# btrfs send -c .1 -c .2 .3 | wc -c
At subvol .3
41970437 # 40 Mio : seulement 'c' ! On a déjà 'a' de '.1' et 'b' de '.2', pas besoin de les envoyer !
~#

Une affaire de famille

[image: mommy]

Au final, on ne peut pas faire un transfert incrémental sans avoir déterminé qui jouera le rôle de parent côté réception.

L'option -p permet de le définir directement. Avec l'option -c et si -p n'est pas utilisé, btrfs send en déterminera un tout seul à partir des sous-volumes clones.

Donc, du point de vue du système de fichiers source, .1, .2 et .3 sont frères, ce sont des instantanés du même sous-volume test :

~# btrfs subvolume list -tuq / | awk 'NR <= 2 || /test/'
ID gen top level parent_uuid uuid path
-- --- --------- ----------- ---- ----
6037 446781 5 - 7a876f9d-d6a9-1e46-ac1e-d9efae8128a3 test
6038 446779 6037 7a876f9d-d6a9-1e46-ac1e-d9efae8128a3 ca43a0a5-11bf-3d43-b524-79be6fc08260 test/.1
6039 446780 6037 7a876f9d-d6a9-1e46-ac1e-d9efae8128a3 3329c9b4-6a95-ce4a-a059-2c2872ba71e8 test/.2
6040 446781 6037 7a876f9d-d6a9-1e46-ac1e-d9efae8128a3 92eda75e-afcd-654f-a42c-9ea6539a1ebe test/.3
~#

Mais du point de vue du système de fichiers destination, .1 est le parent de .2, lui-même le parent de .3 :

~# btrfs subvolume list -tuq /mnt
ID gen top level parent_uuid uuid path
-- --- --------- ----------- ---- ----
295 425 5 - ec91e7bb-aae7-de42-b3dd-9e12c1fefc68 .1
296 428 5 ec91e7bb-aae7-de42-b3dd-9e12c1fefc68 39cadd5a-384b-534a-b256-e2b8c62959dd .2
297 429 5 39cadd5a-384b-534a-b256-e2b8c62959dd abb14bb5-ceb8-db4c-badc-3e171cac4328 .3
~#

La suite

La restauration

Ça s'en va et ça revient…

Savoir faire des sauvegardes, c'est bien. Savoir les restaurer… c'est bien aussi.

Ça tombe bien, on a vu plus compliqué :

~# mkdir -p /.snapshots/2
~# btrfs send /mnt/2/snapshot | btrfs receive /.snapshots/2
~# cp /mnt/2/info.xml /.snapshots/2/ # pour snapper
~#

Bref, ensuite il suffit de faire une restauration classique, avec snapper ou directement avec les commandes btrfsprogs.

[image: beurre]

Des soucis avec GRUB ?

Pour mettre à jour le menu du chargeur d'amorçage avec un GRUB vanilla, je vous laisse regarder sur vos wikis préférés. Parce que je ne sais pas le faire.

Pour le GRUB patché d'openSUSE, il n'y a rien à toucher normalement.

À la rigueur, si vous ne faites pas un rollback de suite, vous pourrez avoir envie de mettre à jour le fichier /.snapshots/grub-snapshot.cfg afin de voir le snapshot reçu dans les menus. Il y a un script pour cela, l'appel est le suivant :

~# /usr/lib/snapper/plugins/grub --refresh
~#

Autrement, il n'y a donc rien à faire… en théorie. Car en pratique, il y a un bug gênant (boo#1049994) qui fait que :

	le menu du l'instantané reçu ne s'affiche pas dans le chargeur d'amorçage d'openSUSE ;

	en cas de restauration de ce snapshot, les autres instantanés bootables ne s'affichent plus.

Les deux soucis ont la même cause : une gestion problématique du sous-volume @/.snapshots. Un workaround :

1) Ajouter un dossier .snapshots au sous-volume reçu :

~# btrfs property set -t s /.snapshots/<id>/snapshot ro false
~# mkdir -p /.snapshots/<id>/snapshot/.snapshots
~# btrfs property set -t s /.snapshots/<id>/snapshot ro true
~#

2) Dans GRUB, avant de tenter d'entrer dans le menu de l'instantané <id>, passer en ligne de commande et faire :

grub> btrfs-mount-subvol ($root) /.snapshots @/.snapshots

ou bien changer /etc/grub.d/80_suse_btrfs_snapshot :

--- 80_suse_btrfs_snapshot (avant)
+++ 80_suse_btrfs_snapshot (après)
@@ -3,6 +3,8 @@
 if ["x${SUSE_BTRFS_SNAPSHOT_BOOTING}" = "xtrue"] &&
 ["x${GRUB_FS}" = "xbtrfs"] ; then
 cat << EOF
+# Explicitely mount @/.snapshots (workaround boo#1049994)
+btrfs-mount-subvol (\$root) /.snapshots @/.snapshots
 if [-f "/.snapshots/grub-snapshot.cfg"]; then
 source "/.snapshots/grub-snapshot.cfg"
 fi

et régénérer GRUB :

~# update-bootloader --refresh
~#

Vu la vitesse a laquelle le bug a été analysé, j'ai bon espoir qu'il soit corrigé d'ici la fin de l'année.

Interrompre et reprendre un transfert

[image: pause]

Les commandes btrfs send et btrfs receive ne gèrent pas l'interruption d'un transfert. C'est-à-dire qu'il n'est pas possible de reprendre l'envoi d'un snapshot partiellement transféré, il faut tout recommencer. Cela peut être embêtant dans le cas d'un transfert très long ou envoyé par le réseau.

Cependant, on peut contourner le problème simplement en mettant la sortie de btrfs send dans un fichier que l'on transmettra avec un outil supportant la reprise de transfert, par exemple rsync.

~# btrfs send /.snapshots/77/snapshot -f /tmp/snapshot.img
At subvol /.snapshots/77/snapshot
~# rsync /tmp/snapshot.img /mnt/
^C
~# rsync --append-verify /tmp/snapshot.img /mnt
~# btrfs receive /mnt/77 -f /mnt/snapshot.img
At subvol /.snapshots/77/snapshot
~# rm /{tmp,mnt}/snapshot.img

Cela demande toutefois de la place sur les systèmes de fichiers source et destination…

Il existe aussi un script Python, buttersink, qui est censé gérer la reprise de transfert, mais a priori uniquement vers un stockage Amazon S3. De plus, il nécessite btrfsprogs 4.11 ou plus récent (issue#36, bko#195597).

Comparer des instantanés

Vu que btrfs send est capable d'envoyer ce qui diffère entre deux instantanés, il peut potentiellement devenir un bel outil de comparaison de snapshots… à condition de savoir interpréter son flux de sortie.

Il existe un script Python, btrfs-snapshots-diff, qui est capable de le décoder et de l'afficher sous une forme à peu près lisible :

~# btrfs-snapshots-diff.py -p /test/.1 -c /test/.2
At subvol /test/.2
Found a valid Btrfs stream header, version 1

.2
 snapshot: uuid=3329c9b46a95ce4aa0592c2872ba71e8, ctrasid=446780, clone_uuid=ca43a0a511bf3d43b52479be6fc08260, clone_ctransid=446779

__sub_root__
 times a=2017/09/03 21:03:00 m=2017/09/03 21:03:32 c=2017/09/03 21:03:32
 times a=2017/09/03 21:03:00 m=2017/09/03 21:03:32 c=2017/09/03 21:03:32
 times a=2017/09/03 21:03:00 m=2017/09/03 21:03:32 c=2017/09/03 21:03:32

a
 unlink

o258-446780-0
 mkfile
 rename to "b"

b
 renamed from "o258-446780-0"
 update extents 0 -> 83886080
 truncate 83886080
 owner 0:0
 mode 644
 times a=2017/09/03 21:03:32 m=2017/09/03 21:03:33 c=2017/09/03 21:03:33
~#

Autrement, snapper peut également comparer des instantanés mais je ne crois pas qu'il utilise btrfs send.

That's all folks!

Liens

	Sur le wiki Btrfs :

	
La mise à jour incrémentale.

	
Notes de conception sur send/receive.

	La FAQ pour les différences entre les options -p et -c de btrfs send.

	Sur le wiki Debian Facile, un tuto très accessible je trouve : La sauvegarde de sous-volumes Btrfs.

	Sur le blog de Marc Merlin, Btrfs Tips: Doing Fast Incremental Backups With Btrfs Send and Receive : un script pour faire des sauvegardes incrémentales et les envoyer vers un disque distant via SSH.

	Sur la liste de diffusion linux-btrfs, un fil sur les options -p et -c de btrfs send.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/df20743be3e05235baf848471518bfd7ea938a9493d39658fe301d5e.jpg

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/c247a90cea3cd7c68153b8ab30646b9df1a58b8980e22a32eaf4ead3.png

EPUB/49163636fd80e3ff1d467cbc3cab56effd8c92a8d89a636e13c9703d.jpg

EPUB/453499f78600955b7d1bc06485e28889ecff34c2c15a756292c59da4.gif

EPUB/f2752791a077bcbe6a8eff7f73b711b0274872d03c8837978bdeef6e.jpg

EPUB/7101df2550d811582cad0ac701ff28b4e85ef517b17aea1c67a7b7af.jpg
Wow :
many realistc

such art

so amaze leonard doge vinci?

much talent
very clow

so fierce .
very made by mairou

EPUB/avatars439068000avatar.gif

