

Journal Outils de pseudo gestion de projet et développement

Posté par azmeuk (site web personnel) le 07 février 2014 à 11:09.
Licence CC By‑SA.

Étiquettes :

	intégration

	git

	github

	gitlab

	continue

	travis

	docker

[image:]

Sommaire

	Besoins

	
Mes données chez les autres
	Github

	Travis CI

	Coveralls

	
Mes données chez moi
	Gitlab CE

	Gitlab CI

	Docker

	Et maintenant

Salut Nal,

Mon premier billet ici, après quelques années passées à lire ceux des autres, est pour vous parler des derniers outils que j'ai eu l'occasion de tester.

Je cherchais les outils nécessaires pour développer collaborativement un programme open source, ou fermé dans le cadre d'une petite entreprise. Plus généralement je cherche un workflow efficace qui s'adapte aux diverses situations que je rencontre.

Besoins

Les fonctionnalités recherchées sont :

	Le versionnage du code source, bien évidemment, mais aussi un moyen de visualisation.

	La possibilité de travailler collaborativement, et concurremment. La gestion des branches est donc nécessaire. La possibilité de soumettre des patches et pour le relecteur de les commenter, diminue de beaucoup la difficulté de participation à un projet libre.

	Fournir simplement et élégamment de la documentation.

	Gérer, trier, archiver les bogues.

	Si l'outil est libre c'est encore mieux.

	Si je peux l'installer où bon me semble, afin d'avoir le contrôle sur mes données, c'est un plus non négligeable. Notamment pour des projets en PME.

	Pour un développement orienté tests, j'ai besoin d'un outil d'intégration continue. Pour faire simple, les jeux de tests doivent être lancés à chaque commit, et j'ai besoin d'être notifié du résultat. La validité des tests augmente avec le nombre d'environnements différents sur lesquels ils sont lancés (Linux, Android, MacOS, Windows etc., mais aussi avec différentes options de compilation).

	Une interface graphique digne de ce millénaire, à savoir sobre et simpliste. Pas de milliers d'options de configurations, pas de couleurs criardes, pas de publicité, etc.

Mes données chez les autres

Une première approche pourrait être « Je ne me prends pas la tête et j'utilise des services dans le cloud ».

Github

Il est presque inutile de présenter le mastodonte qu'est Github. Parmi les quelques de forges que j'ai eu l'occasion de tester (Github, CodingTeam, Savannah, Sourceforge, Redmine, Launchpad un petit peu), Github est de loin la meilleure. (Mais je veux bien qu'on me parle de bitbucket et consorts). Github est plus qu'une forge, presque un réseau social de développeurs. J'ai déjà vu des offres d'emploi demandant un compte Github actif.

Github a toutes les fonctionnalités majeures dont j'ai besoin :

	Gestion des bugs simple et efficace (possibilité de trier par tag et par release)

	Un wiki pour la documentation, la gestion du format markdown pour voir les README via l'interface web est un plus.

	La « killer feature » de Github, c'est selon moi la gestion des « pull request ». Ou pour ceux qui ne connaissent pas, la gestion interactive des patches. Pour faire court, on forke un projet en deux clics. Dès lors on a un dépôt git sur lequel on peut apporter les modifications que l'on veut. Enfin on peut soumettre les contributions au dépôt original. Les développeurs du projet upstream peuvent facilement reviewer, commenter, tester les modifications, puis valider ou non la demande.

	En bonus, des snippets de code et des statistiques sur les dépôts

	Enfin la sobriété de l'interface de Github correspond tout à fait à mes attentes.

Travis CI

Toute une panoplie de services peuvent se brancher sur Github en deux clics, parmi eux Travis CI. Travis est un service d'intégration continue, gratuit pour le projets publics de Github, payant pour les autres.

L'idée est simple, à chaque commit sur un projet Github, Travis exécute une batterie de tests et notifie l'auteur du résultat (par mail, irc etc.). Là où Travis est fort c'est qu'à chaque fois, une nouvelle machine virtuelle est déployée, garantissant un environnement de test neutre. Et comme c'est une machine virtuelle, on a les droits administrateur et le script de test peut installer toutes les dépendances dont le programme a besoin.

Travis permet notamment de lancer des builds en parallèle, même pour les comptes gratuits. Enfin pour les applications web, il est toujours possible d'effectuer une batterie de tests en utilisant xvfb, qui permet d'émuler un environnement X. Les builds sont tués après 10000 lignes de logs, 10 minutes sans log ou simplement si le build dépasse 50 minutes.

Parmi les faiblesses de travis il y a le peu d'images disponibles. En gros on a le choix entre une Ubuntu 12.04 LTS et une image de MacOS pour les projets ObjectiveC. Par contre on peut indiquer à Travis sur quel langages vont porter les tests afin qu'il déploie une image avec des paquets préinstallés. Petit moins, les logs des builds scintillent avec Firefox, sur toutes mes machines.

Coveralls

Enfin pour donner un peu de récursivité à tout ces services, il est possible de brancher des outils à Travis. L'un deux est coveralls, qui permet de visualiser et de faire quelques statistiques sur les données de couvertures de code extraites par gcov, durant les tests lancés par Travis. Coveralls supporte plusieurs langages dont Ruby on Rails, Python, PHP, Node.js, C/C++, Scala

Mes données chez moi

Mais tout ça c'était avant ça :

Gitlab CE

Je suis étonné de voir à quel point Gitlab est méconnu par rapport à sa puissance. Gitlab a toutes les fonctionnalités de Github (voir plus haut), l'interface est presque à la limite du plagiat. La différence qui fait toute la différence est énorme :

Gitlab CE est sous license MIT, et installable partout où vous le voulez. Pas besoin de payer pour un dépôt privé, et vos données sont chez vous. Pour les dépôts publics et pour ceux qui ne veulent pas déployer un serveur, il est toujours possible d'utiliser gitlab.com

Il existe aussi une version payante de Gitlab avec quelques fonctionnalités en plus (sur les annuaires LDAP etc.)

Gitlab CI

Mais comme si ça ne suffisait pas, les éditeurs de Gitlab ont aussi développé leur outil d'intégration continue Gitlab CI. Gitlab CI se branche en deux clics à Gitlab et possède une interface vraiment sobre et efficace.

Par rapport à Travis, il possède quelques fonctionnalités en plus, dont les statistiques sur les builds, et quelques fonctionnalités en moins, dont les notifications par IRC (bien que ça devrait être possible à scripter assez facilement).

La différence principale est que les builds ne sont pas exécutés dans des machines virtuelles, mais par des « runners ». Un runner est un client qui va lancer la batterie de test voulue. Ils peuvent être multiples et surtout, peuvent être n'importe quelle machine. Pas forcément le serveur sur lequel Gitlab CI est installé, mais votre PC ou le mien par exemple. On peut lancer des runners sous Linux, Windows, et à mon avis ça ne devrait pas être trop compliqué sous Mac. Les résultats sont en suite transmis au serveur.

Les runners semblent être considérés indifféremment de leur plateforme, je n'ai pas trouvé de moyen de s'assurer que les tests sont exécutés deux fois, sur deux distributions différentes par exemple.

Le principal inconvénient est qu'on risque d'avoir des comportements différents, d'une part si la compilation et les tests ont des effets de bord, et d'autre part en fonction des environnements sur lesquels ils sont exécutés. Mais c'est là qu'intervient Docker.

Docker

Pour reprendre Wikipedia, Docker d'automatisation de déploiement d'applications dans des conteneurs logiciels sous license Apache 2.0. Pour démystifier cette formulation barbare, Docker est un programme qui déploie des images de système d'exploitation dans des conteneurs plutôt que dans des machines virtuelles, exécute des programmes sur ces images. Le mécanisme est le même que celui de la machine virtuelle, mais moins coûteux en ressources. Certainement moins sécurisé, mais dans notre cas de figure c'est sans doute suffisant.

Une image issue de leur site qui illustre la différence.
[image: Docker et le mécanisme de container]

Bien que Docker soit un projet n'ayant même pas un an, il était en Novembre le 14ème projet le plus populaire de Github.

Docker permet de déployer des images d'un large pannel de systèmes d'exploitation (ubuntu, debian, fedora, archlinux etc.). Il est possible aussi de créer ses propres images, avec par exemple des dépendances pré-installées. Ce qui peut manquer c'est par contre des images de systèmes propriétaires (Windows, MacOS).

La bonne nouvelle c'est que ça semble se brancher facilement sur Gitlab CI.

Et maintenant

Maintenant il est temps que je teste Gitlab & co. sur la durée pour voir ce qu'il en est. Je n'ai pas encore eu l'occasion de tester tout ce dont j'ai parlé pour le moment, vous voudrez bien m'excuser les possibles approximations. Pour le moment, j'ai trouvé l'installation assez simple et les fonctionnalités sont aux rendez-vous. Je ferais sans doute un retour d'expérience dans quelques mois.

Enjoie

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/2e239b48624eb85b5afce42721162e0d87a912dbe5bcc08d3e53ba64.jpg
' Containers vs. VMs

Containers are isolated,
but share OS and, where

Vi appropriate, bins/libraries

Container

 Hypervisor (Type 2)
Host 0

EPUB/avatars074040000avatar.png

