

Journal Remonter l'historique du noyau avec git depuis le début

Posté par benoar le 18 septembre 2018 à 18:20.
Licence CC By‑SA.

Étiquettes :

	git

	linux

	kernel

	linus_torvalds

[image:]

Vous arrive-t-il de « blâmer » (git-blame(1)) un fichier du noyau Linux et tomber sur le commit original de Linus 1da177e4c3f4 (“Linux 2.6.12-rc2”) ? Quand je tombe dessus, en général, je laisse tomber ma recherche car c'est un signe que je suis allé « un peu trop loin », et j'essaye de trouver la raison de la présence du code en réfléchissant un peu plus, sans autre indice.

Mais dernièrement, j'ai vraiment voulu savoir qui disait dans les sources de Linux que Van Jacobson se trompait dans son fameux papier du SIGCOMM en 1988 qui a inventé le TCP slow-start (“Congestion Avoidance and Control” http://ee.lbl.gov/papers/congavoid.pdf), le premier algorithme à réguler correctement l'Internet.

J'ai commencé par « blâmer » net/ipv4/tcp_input.c (c'est la sortie de :Gblame de vim-fugitive https://github.com/tpope/vim-fugitive par Tim Pope, en réalité) :

740b0f1841f6e 670 (Eric Dumazet 2014-02-26 14:02:48 -0800 |static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
^1da177e4c3f4 610 (Linus Torvalds 2005-04-16 15:20:36 -0700 |{
6687e988d9aea 555 (Arnaldo Carvalho de Melo 2005-08-10 04:03:31 -0300 | struct tcp_sock *tp = tcp_sk(sk);
740b0f1841f6e 673 (Eric Dumazet 2014-02-26 14:02:48 -0800 | long m = mrtt_us; /* RTT */
740b0f1841f6e 674 (Eric Dumazet 2014-02-26 14:02:48 -0800 | u32 srtt = tp->srtt_us;
^1da177e4c3f4 612 (Linus Torvalds 2005-04-16 15:20:36 -0700 |
^1da177e4c3f4 616 (Linus Torvalds 2005-04-16 15:20:36 -0700 | /* The following amusing code comes from Jacobson's
^1da177e4c3f4 617 (Linus Torvalds 2005-04-16 15:20:36 -0700 | * article in SIGCOMM '88. Note that rtt and mdev
^1da177e4c3f4 618 (Linus Torvalds 2005-04-16 15:20:36 -0700 | * are scaled versions of rtt and mean deviation.
e905a9edab7f4 564 (YOSHIFUJI Hideaki 2007-02-09 23:24:47 +0900 | * This is designed to be as fast as possible
^1da177e4c3f4 620 (Linus Torvalds 2005-04-16 15:20:36 -0700 | * m stands for "measurement".
^1da177e4c3f4 621 (Linus Torvalds 2005-04-16 15:20:36 -0700 | *
^1da177e4c3f4 622 (Linus Torvalds 2005-04-16 15:20:36 -0700 | * On a 1990 paper the rto value is changed to:
^1da177e4c3f4 623 (Linus Torvalds 2005-04-16 15:20:36 -0700 | * RTO = rtt + 4 * mdev
^1da177e4c3f4 624 (Linus Torvalds 2005-04-16 15:20:36 -0700 | *
^1da177e4c3f4 625 (Linus Torvalds 2005-04-16 15:20:36 -0700 | * Funny. This algorithm seems to be very broken.
^1da177e4c3f4 626 (Linus Torvalds 2005-04-16 15:20:36 -0700 | * These formulae increase RTO, when it should be decreased, increase
31f3426904e06 549 (Stephen Hemminger 2005-11-15 15:17:10 -0800 | * too slowly, when it should be increased quickly, decrease too quickly
^1da177e4c3f4 628 (Linus Torvalds 2005-04-16 15:20:36 -0700 | * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
^1da177e4c3f4 629 (Linus Torvalds 2005-04-16 15:20:36 -0700 | * does not matter how to _calculate_ it. Seems, it was trap
^1da177e4c3f4 630 (Linus Torvalds 2005-04-16 15:20:36 -0700 | * that VJ failed to avoid. 8)
^1da177e4c3f4 631 (Linus Torvalds 2005-04-16 15:20:36 -0700 | */
4a5ab4e224288 692 (Eric Dumazet 2014-02-06 15:57:10 -0800 | if (srtt != 0) {
4a5ab4e224288 693 (Eric Dumazet 2014-02-06 15:57:10 -0800 | m -= (srtt >> 3); /* m is now error in rtt est */
4a5ab4e224288 694 (Eric Dumazet 2014-02-06 15:57:10 -0800 | srtt += m; /* rtt = 7/8 rtt + 1/8 new */
^1da177e4c3f4 637 (Linus Torvalds 2005-04-16 15:20:36 -0700 | if (m < 0) {

On tombe sur ce fameux commit. Je cherche alors un dépôt qui pourrait contenir l'historique précédent ; Thomas Gleixner a justement créé un dépôt contenant l'historique pré-git :

git remote add tglx-history git://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
git fetch tglx-history

Et j'utilise alors la commande magique :

git replace 1da177e4c3f4 e7e173af42db

Le second SHA1 correspond à la pointe de cet ancien historique (on aura vérifié au préalable que ces deux arborescences correspondent exactement avec un "git diff 1da177e4c3f4 e7e173af42db", ou en vérifiant le SHA1 du tree avec un "git show --format=raw" de chacun des deux commits), et sera donc maintenant substitué à toute référence à 1da177e4c3f4.

Je re-blame :

740b0f1841f6e 670 (Eric Dumazet 2014-02-26 14:02:48 -0800 |static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
^7a2deb329241 418 (Linus Torvalds 2002-02-04 17:40:40 -0800 |{
6687e988d9aea 555 (Arnaldo Carvalho de Melo 2005-08-10 04:03:31 -0300 | struct tcp_sock *tp = tcp_sk(sk);
740b0f1841f6e 673 (Eric Dumazet 2014-02-26 14:02:48 -0800 | long m = mrtt_us; /* RTT */
740b0f1841f6e 674 (Eric Dumazet 2014-02-26 14:02:48 -0800 | u32 srtt = tp->srtt_us;
^7a2deb329241 420 (Linus Torvalds 2002-02-04 17:40:40 -0800 |
^7a2deb329241 421 (Linus Torvalds 2002-02-04 17:40:40 -0800 | /* The following amusing code comes from Jacobson's
^7a2deb329241 422 (Linus Torvalds 2002-02-04 17:40:40 -0800 | * article in SIGCOMM '88. Note that rtt and mdev
^7a2deb329241 423 (Linus Torvalds 2002-02-04 17:40:40 -0800 | * are scaled versions of rtt and mean deviation.
e905a9edab7f4 564 (YOSHIFUJI Hideaki 2007-02-09 23:24:47 +0900 | * This is designed to be as fast as possible
^7a2deb329241 425 (Linus Torvalds 2002-02-04 17:40:40 -0800 | * m stands for "measurement".
^7a2deb329241 426 (Linus Torvalds 2002-02-04 17:40:40 -0800 | *
^7a2deb329241 427 (Linus Torvalds 2002-02-04 17:40:40 -0800 | * On a 1990 paper the rto value is changed to:
^7a2deb329241 428 (Linus Torvalds 2002-02-04 17:40:40 -0800 | * RTO = rtt + 4 * mdev
^7a2deb329241 429 (Linus Torvalds 2002-02-04 17:40:40 -0800 | *
^7a2deb329241 430 (Linus Torvalds 2002-02-04 17:40:40 -0800 | * Funny. This algorithm seems to be very broken.
^7a2deb329241 431 (Linus Torvalds 2002-02-04 17:40:40 -0800 | * These formulae increase RTO, when it should be decreased, increase
31f3426904e06 549 (Stephen Hemminger 2005-11-15 15:17:10 -0800 | * too slowly, when it should be increased quickly, decrease too quickly
^7a2deb329241 433 (Linus Torvalds 2002-02-04 17:40:40 -0800 | * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
^7a2deb329241 434 (Linus Torvalds 2002-02-04 17:40:40 -0800 | * does not matter how to _calculate_ it. Seems, it was trap
^7a2deb329241 435 (Linus Torvalds 2002-02-04 17:40:40 -0800 | * that VJ failed to avoid. 8)
^7a2deb329241 436 (Linus Torvalds 2002-02-04 17:40:40 -0800 | */
4a5ab4e224288 692 (Eric Dumazet 2014-02-06 15:57:10 -0800 | if (srtt != 0) {
4a5ab4e224288 693 (Eric Dumazet 2014-02-06 15:57:10 -0800 | m -= (srtt >> 3); /* m is now error in rtt est */
4a5ab4e224288 694 (Eric Dumazet 2014-02-06 15:57:10 -0800 | srtt += m; /* rtt = 7/8 rtt + 1/8 new */
^7a2deb329241 442 (Linus Torvalds 2002-02-04 17:40:40 -0800 | if (m < 0) {

Damned, on remonte jusqu'à 2002 seulement, l'année où le noyau est passé à Bitkeeper. Peut-on remonter encore plus loin ? Je ne trouve pas directement sur https://git.kernel.org/pub/scm/linux/kernel/git/ alors je demande à mon moteur de recherche, et je tombe sur une page de stack-overflow qui fait exactement ce que je voulais faire, même si elle est un peu ancienne : https://stackoverflow.com/questions/3264283/linux-kernel-historical-git-repository-with-full-history

En effet, git n'utilise plus les « graft » depuis quelques temps (cf. https://git.wiki.kernel.org/index.php/GraftPoint), et le dépôt de Dave Jones a bougé ; on fait donc :

git remote add davej-history git://repo.or.cz/davej-history.git
git fetch davej-history
git replace 7a2deb329241 379a6be1eedb

Bon, en réalité, 379a6be1eedb (2.4.0-prerelease) diffère un peu de 7a2deb329241 (qui doit être la 2.4.0, selon le Makefile), mais ça ira pour nous. Re-blâmons :

740b0f1841f6e 670 (Eric Dumazet 2014-02-26 14:02:48 -0800 |static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
27fc11ad19808 81 (Linus Torvalds 2007-11-23 15:10:34 -0500 |{
6687e988d9aea 555 (Arnaldo Carvalho de Melo 2005-08-10 04:03:31 -0300 | struct tcp_sock *tp = tcp_sk(sk);
740b0f1841f6e 673 (Eric Dumazet 2014-02-26 14:02:48 -0800 | long m = mrtt_us; /* RTT */
740b0f1841f6e 674 (Eric Dumazet 2014-02-26 14:02:48 -0800 | u32 srtt = tp->srtt_us;
1a92894a2b89e 132 (Linus Torvalds 2007-11-23 15:14:55 -0500 |
1a92894a2b89e 133 (Linus Torvalds 2007-11-23 15:14:55 -0500 | /* The following amusing code comes from Jacobson's
27fc11ad19808 85 (Linus Torvalds 2007-11-23 15:10:34 -0500 | * article in SIGCOMM '88. Note that rtt and mdev
27fc11ad19808 86 (Linus Torvalds 2007-11-23 15:10:34 -0500 | * are scaled versions of rtt and mean deviation.
e905a9edab7f4 564 (YOSHIFUJI Hideaki 2007-02-09 23:24:47 +0900 | * This is designed to be as fast as possible
27fc11ad19808 88 (Linus Torvalds 2007-11-23 15:10:34 -0500 | * m stands for "measurement".
564ea1ed16941 130 (Linus Torvalds 2007-11-23 15:13:08 -0500 | *
0f9cac5b27076 119 (Linus Torvalds 2007-11-23 15:12:38 -0500 | * On a 1990 paper the rto value is changed to:
0f9cac5b27076 120 (Linus Torvalds 2007-11-23 15:12:38 -0500 | * RTO = rtt + 4 * mdev
58243c28f5045 420 (Linus Torvalds 2007-11-23 15:37:53 -0500 | *
58243c28f5045 421 (Linus Torvalds 2007-11-23 15:37:53 -0500 | * Funny. This algorithm seems to be very broken.
58243c28f5045 422 (Linus Torvalds 2007-11-23 15:37:53 -0500 | * These formulae increase RTO, when it should be decreased, increase
31f3426904e06 549 (Stephen Hemminger 2005-11-15 15:17:10 -0800 | * too slowly, when it should be increased quickly, decrease too quickly
58243c28f5045 424 (Linus Torvalds 2007-11-23 15:37:53 -0500 | * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
58243c28f5045 425 (Linus Torvalds 2007-11-23 15:37:53 -0500 | * does not matter how to _calculate_ it. Seems, it was trap
58243c28f5045 426 (Linus Torvalds 2007-11-23 15:37:53 -0500 | * that VJ failed to avoid. 8)
0f9cac5b27076 121 (Linus Torvalds 2007-11-23 15:12:38 -0500 | */
4a5ab4e224288 692 (Eric Dumazet 2014-02-06 15:57:10 -0800 | if (srtt != 0) {
4a5ab4e224288 693 (Eric Dumazet 2014-02-06 15:57:10 -0800 | m -= (srtt >> 3); /* m is now error in rtt est */
4a5ab4e224288 694 (Eric Dumazet 2014-02-06 15:57:10 -0800 | srtt += m; /* rtt = 7/8 rtt + 1/8 new */
480eec6cdddc4 442 (Linus Torvalds 2007-11-23 15:41:02 -0500 | if (m < 0) {

Rha, les dates ne sont pas bonnes… Bon, c'est expliqué dans un commentaire plus bas sur la page SO précédemment citée, à priori le travail de Dave Jones sur archive.org aurait les bonnes dates. Mais ça reste un découpage par release, même sur archive.org : on voit que le bout qui m'intéresse vient de la 1.3.63, mais pas précisément qui l'a écrit.

Du coup je cherche plus loin, et je tombe sur https://pdfs.semanticscholar.org/d449/a2b0223e39c2eb86b85b4ea28cf9a1b0275c.pdf, un papier qui décrit la migration du développement de Linux de CVS vers BitKeeper, et parle d'un dépôt CVS de David S. Miller pour sa branche netdev, qui est un développeur de longue date du noyau et mainteneur depuis des lustres de la partie réseau, qu'on peut trouver ici en version git : https://git.kernel.org/pub/scm/linux/kernel/git/davem/netdev-vger-cvs.git/

Bon, la branche n'étant pas la « principale » de Linus, on ne tombe pas exactement sur le même code, mais après quelques recherches d'approximation, je tombe sur e51d875ae7fd qui ressemble pas mal au 2.4.0 final :

git remote add davem-netdev-vger-cvs git://git.kernel.org/pub/scm/linux/kernel/git/davem/netdev-vger-cvs.git
git fetch davem-netdev-vger-cvs
git replace 7a2deb329241 e51d875ae7fd

Voyons ce que ça donne :

740b0f1841f6e 670 (Eric Dumazet 2014-02-26 14:02:48 -0800 |static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
67329859a6829 81 (davem 1996-02-25 06:24:52 +0000 |{
6687e988d9aea 555 (Arnaldo Carvalho de Melo 2005-08-10 04:03:31 -0300 | struct tcp_sock *tp = tcp_sk(sk);
740b0f1841f6e 673 (Eric Dumazet 2014-02-26 14:02:48 -0800 | long m = mrtt_us; /* RTT */
740b0f1841f6e 674 (Eric Dumazet 2014-02-26 14:02:48 -0800 | u32 srtt = tp->srtt_us;
002c9340aafc9 132 (davem 1998-03-14 06:09:54 +0000 |
002c9340aafc9 133 (davem 1998-03-14 06:09:54 +0000 | /* The following amusing code comes from Jacobson's
67329859a6829 85 (davem 1996-02-25 06:24:52 +0000 | * article in SIGCOMM '88. Note that rtt and mdev
67329859a6829 86 (davem 1996-02-25 06:24:52 +0000 | * are scaled versions of rtt and mean deviation.
e905a9edab7f4 564 (YOSHIFUJI Hideaki 2007-02-09 23:24:47 +0900 | * This is designed to be as fast as possible
67329859a6829 88 (davem 1996-02-25 06:24:52 +0000 | * m stands for "measurement".
9805f13373c65 130 (davem 1997-04-22 01:06:27 +0000 | *
2248761e5cfcb 119 (davem 1996-11-10 21:25:00 +0000 | * On a 1990 paper the rto value is changed to:
2248761e5cfcb 120 (davem 1996-11-10 21:25:00 +0000 | * RTO = rtt + 4 * mdev
bf439654ca139 420 (davem 2000-08-09 11:59:03 +0000 | *
bf439654ca139 421 (davem 2000-08-09 11:59:03 +0000 | * Funny. This algorithm seems to be very broken.
bf439654ca139 422 (davem 2000-08-09 11:59:03 +0000 | * These formulae increase RTO, when it should be decreased, increase
31f3426904e06 549 (Stephen Hemminger 2005-11-15 15:17:10 -0800 | * too slowly, when it should be increased quickly, decrease too quickly
bf439654ca139 424 (davem 2000-08-09 11:59:03 +0000 | * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
bf439654ca139 425 (davem 2000-08-09 11:59:03 +0000 | * does not matter how to _calculate_ it. Seems, it was trap
bf439654ca139 426 (davem 2000-08-09 11:59:03 +0000 | * that VJ failed to avoid. 8)
2248761e5cfcb 121 (davem 1996-11-10 21:25:00 +0000 | */
4a5ab4e224288 692 (Eric Dumazet 2014-02-06 15:57:10 -0800 | if (srtt != 0) {
4a5ab4e224288 693 (Eric Dumazet 2014-02-06 15:57:10 -0800 | m -= (srtt >> 3); /* m is now error in rtt est */
4a5ab4e224288 694 (Eric Dumazet 2014-02-06 15:57:10 -0800 | srtt += m; /* rtt = 7/8 rtt + 1/8 new */
893e1302654a9 442 (davem 2000-12-13 04:10:12 +0000 | if (m < 0) {

OK, beaucoup de commits sont indiqués comme venant de davem même si ça n'est pas forcément lui, mais voici ce que dit le message de commit :

commit bf439654ca139cfdac75ec1fc357da5c9917c00a
Author: davem <davem>
Date: Wed Aug 9 11:59:03 2000 +0000

 Merge in ANKs net-000808-23:20 patch.
 Linus better eat this.

Mais qui est cet ANK ? Il a l'air d'être assez actif dans le réseau. Je vois dans un commentaire un lien vers ftp.inr.ac.ru pour iproute2, et là ça me revient à l'esprit : Alexey Kuznetsov ! Qui est un des auteurs principaux d'iproute2 et de pas mal de code IPv6 dans le noyau.

Bon, il est tard pour aller plus loin, il me restera à étudier le commentaire en question pour plus tard.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

