

Journal La stratégie de Mozilla pour les jeux vidéo sur le Web ouvert

Posté par Benoit Jacob (site web personnel) le 03 avril 2013 à 16:05.
Licence CC By‑SA.

Étiquettes :

	mozilla

	asmjs

	jeu_vidéo

	firefox

[image:]

Avertissement habituel: Mozilla est mon employeur, je suis biaisé. Ceci dit, ce que j'écris ici ne reflète que mes opinions personnelles.

Un nouveau front s'est ouvert dans «guerre du Web»: le jeu vidéo. Ce journal va tenter d'expliquer ce que Mozilla est en train d'y faire, et pourquoi c'est important.

Par "jeux du Web ouvert" je veux dire des jeux vidéo n'utilisant que des standards du Web ouvert tels JavaScript, HTML, les Canvas 2D et WebGL, WebAudio et autres technologies ouvertes, sans utilisation de plugins binaires tels que Flash.

Pour un développeur de navigateurs, s'intéresser au jeu vidéo peut sembler étrange. C'est une chose récente pour Mozilla. Il y a seulement deux ans, on n'avait pas vraiment d'organisation rationelle sur ce sujet. On se contentait d'assister passivement à l'émergence très lente des premiers jeux du Web ouvert, qui commençaient péniblement à faire un peu de concurrence aux jeux Flash alors omniprésents.

Et puis on s'est réveillés, je dirais en sursaut, vers la fin 2011, quand on s'est rendu compte de ce qui était sur le point de se passer:

1. Si le Web ouvert n'est pas prêt à temps, les jeux utiliseront alors des technologies propriétaires. C'est ce qui s'est passé avec Flash lors de la «première manche» il y a quelques années (Farmville…), à nous de ne pas rater la «deuxième manche».

2. Lorsque (et si) les jeux du Web ouvert émergeront, les navigateurs qui seront prêts à les exécuter en tireront un grand avantage compétitif sur ceux qui ne le seront pas.

3. Les jeux vidéo sont généralement des applications très exigentes en matière de performances et de fonctionnalités. Un navigateur qui sait les exécuter dans de bonnes conditions sera prêt à exécuter la plupart des autres applications. C'est un très bon test pour un navigateur.

Alors, qu'est-ce qu'on fait à Mozilla quand on se rend compte qu'il est temps de s'organiser? On crée une page de wiki, bien sûr! Cette page n'est plus à jour depuis longtemps, mais pendant les 6 premiers mois de cet effort (fin 2011, début 2012), elle a été notre principal outil. On y a recensé tous les aspects à prendre en compte pour le jeu vidéo: des performances JS à WebGL au stockage local de gros fichiers… Selon les domaines, il y avait besoin soit d'améliorer le navigateur, soit même d'ajouter des APIs manquantes au Web pour offrir aux jeu vidéo un environnement d'exécution complet. Par exemple, à l'époque, il n'y avait pas d'API Web pour accéder aux manettes de jeu ni pour accéder à la souris en mode verrouillé. Par chance, Google travaillait sur les mêmes problèmes au même moment, ce qui a permis de partager l'effort.

Deux problèmes se posaient cependant, qui allaient nous causer beaucoup de souci:

1. Les développeurs de jeux vidéo ont déjà écrit des millions de lignes de code, le plus souvent en C++. Les autres plateformes de jeu leur permettent d'utiliser leur code existant. Le Web leur demandait de tout réécrire en JavaScript. Comment leur faciliter la tâche?

2. Le JavaScript, même après des années d'améliorations des performances, n'arrivait toujours pas à dépasser environ 10% de la vitesse du code natif dans des applications réelles.

Pendant ce temps, Google réfléchissait aux mêmes problèmes, et mettait au point une solution qui devait les résoudre tous les deux: Native Client. Native Client consiste à distribuer du code machine à la place du JavaScript, mais ce code machine est un peu restreint, est préalablement vérifié statiquement, et est exécuté dans un environnement contrôlé, avec des entrées-sorties limitées, pour offrir un bon niveau de sécurité. On peut dire qu'avec Native Client, Google a résolu les problèmes de sécurité des plugins binaires. Le but de Native Client est de résoudre les deux problèmes mentionnés plus haut: facilité de porter le code C/C++ existant car il suffit de recompiler, et performances proches du code "natif".

Cependant, Native Client n'est pas une solution que Mozilla pouvait adopter, et ceci pour deux raisons:

1. Le code Native Client est du code machine spécifique à une architecture de CPU. Il n'y a donc pas de portabilité à ce niveau-là. Un jeu Native Client pour x86 ne peut pas tourner sur une machine ARM, sauf à le faire tourner dans un émulateur x86… Réciproquement, une application Native Client ARM ne tourne pas sur x86. Or à Mozilla on n'est pas prêts à renoncer à la portabilité du Web.

2. Le code Native Client ne peut en gros faire d'entrées-sorties que par un ensemble d'APIs spécifiques, dites Pepper. Il y a certes la possibilité théorique d'utiliser les bonnes vieilles APIs DOM du Web, mais tout un ensemble de raisons fait que ce n'est pas ce que font les applications Native Client dans la pratique (c'est lent et ce n'est pas fait pour ça). Il est donc clair que supporter Native Client n'a pas de sens si l'on ne supporte pas les APIs Pepper. Or, contrairement aux APIs DOM du Web, les APIs Pepper ne sont pas le fruit d'un processus ouvert entre les différents développeurs de navigateurs. Ce sont des APIs décidées par Google seul, visant à offrir une interface à des composants spécifiques de Chromium. Par exemple, pour le graphisme de bas niveau, alors que le Web ouvert propose WebGL, Pepper propose d'utiliser directement l'OpenGL ES 2.0 implémenté par Chromium. La différence est que dans le cas de WebGL, l'éventail de fonctionnalités (et donc le compromis entre fonctionnalités et portabilité) est décidé conjointement par les différents fabricants de navigateurs, alors que dans le cas de Pepper, on a un compromis différent, décidé par Google seul. Il serait futile de croire que cela pourrait changer si d'autres fabricants de navigateurs rejoignaient Pepper maintenant, alors que des centaines d'applications Native Client sont déjà commercialisées dans le Chrome Web Store.

En résumé, Mozilla avait du souci à se faire: alors que les problèmes du JavaScript semblaient difficiles à résoudre, Google avait une solution à ces problèmes en route, et Mozilla ne pourrait pas adopter la solution de Google sans renoncer à la fois à ses principes (portabilité multi-architecture du Web) et à son influence (APIs Pepper déjà décidées par Google venant remplacer les standards ouverts existants).

La clé de la solution finalement retenue a été un projet jusque-là maintenu par un chercheur de Mozilla: j'ai nommé Emscripten. Emscripten est un compilateur basé sur LLVM qui émet du JavaScript. Tout code C/C++ peut ainsi être traduit en JavaScript. Il existait déjà des démos intéressantes de ce que ça permettait, telles qu'un portage de Doom en JavaScript utilisant un Canvas 2D pour l'affichage.

Est-ce qu'Emscripten pourrait évoluer assez vite pour offrir une vraie solution pour porter des jeux vidéo récents avec un bon niveau de performances? On pensait que oui, mais ça restait à prouver, afin que l'industrie du jeu vidéo nous prenne au sérieux.

Ainsi on a pris un jeu libre en 3D, Sauerbraten. Il s'agit d'un jeu de tir à la Quake, écrit en C++ avec OpenGL, et des graphismes assez avancés, comparable à ce qui se faisait de mieux il y a environ 10 ans. Qu'est-ce qui allait se passer si on demandait à Emscripten de le traduire en JavaScript? La réponse est que bien que la traduction du code C++ en JS fonctionne à merveille, les entrées-sorties utilisant des APIs natives ne sont pas triviales à traduire en termes d'APIs Web. Par exemple, le code utilise des appels à OpenGL, incluant des vieux appels OpenGL 1, qui n'ont pas d'équivalent direct en WebGL. Très vite on s'est fixés une règle: pour porter un jeu vidéo au Web, on doit autant que possible étendre les capacités d'Emscripten pour faire le portage automatiquement, plutôt que de faire du portage manuel. Ainsi chaque portage de jeu conduit à améliorer Emscripten pour en faire un outil complet. C'est pourquoi nous avons étendu les capacités d'Emscripten pour traduire automatiquement les appels OpenGL en appels WebGL, même les vieux appels OpenGL 1. De même les entrées-sorties réseau sont traduites en WebRTC pour permettre le jeu multi-joueur.

Le résultat est ici, et répond au doux nom de BananaBread («gâteau banane»). Une fois le jeu lancé, appuyer sur la touche en-dessous de Echap pour afficher le menu. Tout marche assez vite, même avec plusieurs bots et adversaires humains en réseau par WebRTC.

Ce qui est unique avec cette démo, c'est que le jeu lui-même est libre, et donc ce projet a pu être ouvert dès le premier jour. Bien sûr tout le code écrit par Mozilla est libre, mais il est plus rare de pouvoir travailler sur un jeu vidéo libre.

Une fois BananaBread prêt, les gros acteurs du monde du jeu vidéo ont commencé à nous prendre bien plus au sérieux que par le passé. On avait désormais une vraie solution à leur proposer pour porter leurs jeux au Web, et une vraie démo montrant que les performances étaient correctes.

Pourtant, les performances correctes ne dépassaient toujours pas 10% de la vitesse du code natif. On n'avait toujours pas résolu ce problème. Ça n'était pas rédhibitoire pour de nombreux jeux, car grâce à WebGL la partie graphique s'exécutait déjà très près de la vitesse du code natif, mais pour le reste (physique, intelligence artificielle…) les jeux Web avait encore un grand handicap à surmonter. On n'avait toujours pas résolu le problème que JavaScript était un langage fondamentalement lent, parce que difficile pour le compilateur à optimiser. Pendant ce temps, Native Client proposait déjà des performances proches du code natif.

Et c'est là qu'un autre ingénieur de Mozilla a eu une idée simplement géniale, qui a changé la donne presque instantanément. Il s'est dit que si JavaScript était difficile à optimiser, c'était parce que ce langage offrait trop de fonctionnalités, et que l'on pourrait simplement définir un sous-ensemble de JavaScript qui ait moins de fonctionnalités mais qui soit bien plus facile à compiler en code efficace. Le résultat est une spécification, publique dès le début, d'un tel sous-ensemble de JavaScript et de la façon dont un compilateur JS peut l'optimiser: c'est le projet asm.js.

La beauté de la chose est que comme il s'agit d'un sous-ensemble de JavaScript, du tel code va être exécutable par n'importe quel navigateur moderne. En plus, comme ce code est de façon inhérente mieux optimisable que du JS «ordinaire», il s'exécute généralement plus vite que du JS ordinaire dans tous les navigateurs. Mais bien entendu, dans un navigateur spécialement prévu pour optimiser ce type de code, les niveaux de performance sont encore plus élevés, et les premiers tests, après seulement quelques semaines de travail, atteignaient déjà plus de 50% de la vitesse du code natif! Et comme ce n'est que du JavaScript, nul besoin d'inventer un nouvel environnement d'entrées-sorties tel que Pepper. Le code asm.js utilise les mêmes APIs DOM que n'importe quel code JavaScript.

Pour en apprendre plus sur asm.js, je recommande la lecture de ce journal de Clochix.

Emscripten a vite gagné une option pour générer du code asm.js, permettant à du code C++ d'être traduit en JS en conservant cette fois-ci plus de 50% de ses performances natives dans tout navigateur reconnaissant asm.js, tout en continuant de tourner dans d'importe quel navigateur.

À peu près au même moment, Mozilla avait pris contact avec Epic Games, les développeurs du fameux moteur Unreal Engine. Grâce à la démo BananaBread, ils nous avaient pris juste assez au sérieux pour accepter qu'une petite équipe d'ingénieurs de Mozilla vienne passer une semaine chez eux pour essayer de porter Unreal Engine 3 au Web ouvert. Ils ne pensaient pas vraiment que ça pourrait marcher d'ici quelques années, mais ils trouvaient que ça serait intéressant de voir ce qu'on pourrait déjà faire.

Grâce à tout le travail déjà effectué sur Emscripten au cours des portages précédents, le portage de Unreal Engine 3 était achevé en seulement 4 jours. Utilisant asm.js, les démos de Unreal Engine 3 tournaient à 50-60 images par seconde dans Firefox sur une machine raisonnable. Epic Games était désormais enthousiaste à l'idée que les jeux utilisant son moteur pourraient tourner sans plugins dans n'importe quel navigateur moderne. Ils nous ont alors proposé d'aller présenter ça ensemble au Games Developers Conference: c'était à San Francisco la semaine dernière.

L'effet de cette annonce sur l'industrie a été énorme. Le même jour, un ingénieur de Chrome (et le chef du groupe de travail WebGL à Khronos) a enregistré un ticket pour V8 demandant à ajouter les optimisations asm.js. Bien qu'il soit encore tôt et que Google n'ait pas communiqué sur ce sujet, je pense que la raison d'être de Native Client s'est évaporée depuis qu'il est établi qu'on peut en faire autant en JavaScript. Par ailleurs, les présentateurs d'autres technologies concurrentes au GDC (tel Adobe promouvant encore Flash) ont dû modifier à la dernière minute leurs exposés pour tenir compte de la nouvelle donne (il faut saluer au passage l'exposé très honnête d'Adobe sur les différentes technologies permettant de faire des jeux Web à l'heure actuelle). Et, coïncidence ou pas, des rumeurs de plus en plus persistantes affirment que Microsoft va enfin supporter WebGL dans IE11.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

