

Journal Quelques aspects de la securite qui n'ont rien a voir avec le "Sandboxing"

Posté par Benoit Jacob (site web personnel) le 22 janvier 2012 à 00:56.
Licence CC By‑SA.

Étiquettes :

	webgl

	firefox

	mozilla

	sandbox

	interweb

	navigateur_web

	sécurité

[image:]

Sommaire

	Traduction de l'article: Quelques aspects de la securite qui n'ont rien a voir avec le "Sandboxing" et la "separation des processus"

		Exemple 1: fuite d'information entre domaines differents

	Exemple 2: bugs du navigateur ou des drivers exposant de la memoire video

	Exemple 3: deni de service sur le client

	Conclusion

Ceci est une traduction de mon entree de blog recente. Quelques remarques avant de commencer:

- mon biais: je travaille chez Mozilla Corporation sur WebGL.

- desole pour les accents mais QWERTY, j'habite en Amerique, toussa.

- le titre original de mon entree de blog etait trop long pour la limite de longueur de titres. Il ne s'agit pas seulement de "Sandboxing".

- la traduction est parfois un peu libre, un peu differente de l'original

D'autre part, comme ici on est chez les Francais raleurs, je n'ai pas a prendre autant de pincettes que dans mon blog agrege sur Planet Mozilla. Donc soyons clairs, ce texte se veut un coup de gueule. Il y a des soi-disant experts en securite qui pretendent que Firefox est vulnerable parce qu'il lui manque telle ou telle fonctionalite presente chez tel concurrent. Sans vouloir nier l'utilite de ces fonctionalites, j'ai pense qu'il etait temps de remettre les pendules a l'heure: la securite des navigateurs est un sujet trop vaste pour qu'une ou deux techniques en particulier puissent faire une grande difference au total, et ces "experts" et autres journalistes se ridiculisent en repetant, sans distance critique, le marketing d'une entreprise... avec laquelle je ne tiens pas a me brouiller car si je critique son marketing, j'ai souvent a travailler avec ses ingenieurs dans les comites de standards, et ca se passe tres bien.

Au fil de mon blog, j'ai largement devie sur un autre sujet qui me tient a coeur: la securite de WebGL, qui a elle aussi ete victime d'une campagne de denigrement de la part, cette fois-ci, d'un autre concurrent, qui lui n'a vraiment pas fait dans la dentelle alors qu'ils avaient eux-memes une technologie avec les memes "failles".

Sur ce, commencons la traduction de ce blog:

Traduction de l'article: Quelques aspects de la securite qui n'ont rien a voir avec le "Sandboxing" et la "separation des processus"

Je ne connais pas grand chose en matiere de securite. C'est un vaste domaine, qui touche a presque tous les aspects de l'informatique, et je n'y suis confronte qu'occasionnellement, dans le cadre de mon travail sur WebGL.

Mais recemment, j'ai trouve quelques articles parlant de securite des navigateurs (comme celui-ci et celui-la) qui brossent un tableau de la securite des navigateurs qui ne resiste meme pas aux quelques exemples que j'ai personnellement rencontres. En effet, ils tendent a reduire la securite des navigateurs a en gros deux aspects:

- L'execution de code arbitraire

- La fuite d'informations entre differents onglets du navigateurs

Ainsi, ils en viennent a juger de la securite des navigateurs sur la base de seulement quelques fonctionnalites tournant autour de ces aspects, telles que le "sandboxing" et la separation en multiples processus.

Ces aspects de la securite sont certes tres importants et interessants, mais meritaient-ils vraiment d'etre ainsi exacerbes au detriment d'autres aspects?

Dans mon experience limitee, dans le cadre de WebGL, ces aspects se sont effectivement manifestes dans certains bugs qu'on a corriges, comme par exemple certains plantages avec corruption du tas. Nous les avons pris tres au serieux et les avons declares "critiques" parce que, en theories, c'est bien ce genre de bugs qui conduit a de l'execution arbitraire de code. Cependant, en pratique, pour autant que je sache, nous n'avons jamais vus d'exploitation de ces bugs, et pour de bonnes raisons: d'abord, une majorite de ces bugs n'est probablement pas reelement exploitable, a plus forte raison avec l'ASLR et la DEP. Mais surtout, ces bugs ont toujours ete faciles a corriger, donc ils ont simplement ete corriges avant d'avoir pu etre largement exploites.

Donc ce dont je voudrais parler ici, c'est d'autres categories de bugs que j'ai rencontres autour de WebGL, qui n'ont pas ete aussi faciles a corriger.

Exemple 1: fuite d'information entre domaines differents

Il y avait une faille dans la version 1.0.0 de la spec WebGL, que Firefox 4 suivait, qui a conduit a une vulnerabilite a la fuite d'information entre domaines differents. Les details sont donnes sur cette page; disons simplement ici qu'elle permettaient a des scripts vicieux provenant d'un domaine, de lire des images provenant d'autres domaines, ce qui est tres preoccupant; cette vulnerabilite a ete reparee dans Firefox 5, mais ca fendait le coeur car le correctif consistait a interdire l'usage d'images d'autres domaines dans WebGL, ce qui a casse la compatibilite avec des pages Web legitimes. Une solution pour ces pages Web a depuis ete implementee.

Il y a de nombreux exemples de vulnerabilites a la fuite d'information entre differents domaines; elles sont un element-cle du paysage du Web car elles decident souvent de ce qui est faisable et de ce qui ne l'est pas (lisez ceci). Par exemple, elles sont une raison majeure pour laquelle on ne permet pas aux pages Web normales de faire le rendu d'autres pages Web avec WebGL, et elles constituent le defi principal pour les CSS Shaders. En plus de faconner les limites de nouvelles technologies Web, elles rendent aussi trop risque l'usage de certaines optimisations par exemples dans les implementations du Canvas 2D.

Il peut etre utile de souligner le fait que la fuite d'information entre differents domaines n'a a peu pres rien a voir avec la fuite d'information entre differents onglets d'un navigateur, ce qui explique pourquoi la separation en multiples processus est hors-sujet ici. La vulnerabilite mentionnee ci-dessus pouvait etre exploitee avec un unique onglet: en effet, le code de demonstration utilisait un unique canvas; et meme si un jour l'exploitation d'une vulnerabilite demandait deux canvas provenant de deux domaines differents, on pourrait encore le faire dans un unique onglet avec des iframes.

Exemple 2: bugs du navigateur ou des drivers exposant de la memoire video

Nous avons vu (et corrige!) quelques bugs qui permettaient, via WebGL, d'acceder en lecture a des parties aleatoires de la memoire video.

Parfois c'etait de notre faute (comme ici): nous ne programmions pas correctement le systeme graphique pour effacer le contenu de nouvelles surfaces, donc elles conservaient leur contenu provenant d'un usage anterieur de cette zone de memoire.

Parfois c'etait la faute du pilote (comme ici et ici), car bien que nous programmions correctement le systeme graphique, il s'emmelait les pinceaux et vous vous retrouviez avec votre fenetre Terminal peinte dans une scene en 3D. De toute facon, c'est la responsabilite du navigateur de garantir que ces bugs n'affectent pas l'utilisateur du fait de sa navigation. Ce dernier bug a ete resolu en mettant Mac OS 10.5 sur la liste noire pour WebGL, mais l'autre affecte des OS plus recents que ca (quoique pas Linux), donc j'encourage tous les utilisateurs a s'assurer qu'ils utilisent la derniere version stable de leur navigateur, qui contourne le probleme!

Exemple 3: deni de service sur le client

Les vulnerabilites de deni de service sont tres preoccupantes pour les serveurs, car pour des gens mal intentionnes, il existe des motivations a attaquer un serveur ainsi. Dans le cas de clients (comme des navigateurs Web), la motivation d'une attaque par deni de service (DoS) est bien plus faible, voire inexistante dans beaucoup de cas. Nous ne rencontrons pas beaucoup de pages Web qui essayent de DoSer le navigateur, parce tout ce qu'elles aurait a y gagner... c'est qu'on ne les visiterait pas a nouveau.

L'existence de vulnerabilites DoS dans la plate-forme Web a toujours ete une realite, et il n'y a pas trop de solutions pour eviter ca. Par exemple, un script peut allouer beaucoup de memoire, ce qui "denie" aux autres programmes sur votre ordinateur le "service" d'avoir cette memoire a leur disposition. Et si le navigateur decidait de limiter la quantite de memoire qu'un script peut utiliser, ca entrerait en conflit avec des cas d'utilisation legitimes, et il resterait encore bien d'autres vulnerabilites DoS ne faisant pas du tout intervenir de scripts. Exercice amusant: avec un navigateur effectuant le rendu sur la carte graphique (ce qui sera bientot tous les navigateurs), essayez de saturer la memoire video avec une page web contenant beaucoup de grandes images.

WebGL, comme toutes les APIs 3D depuis qu'OpenGL 1.1 a introduit en 1997 la notion de "vertex arrays", a une vulnerabilite DoS bien specifique: il permet de monopoliser la carte graphique (GPU), ce qui est particulierement casse-pieds parce que les GPUs actuels sont non-preemptibles. Les OS modernes (oui, ca inclut Linux avec certains pilotes, je crois Mesa/Intel et NVIDIA au moins, mais on est en discussion avec des devs de pilotes au sujet de certains bugs) ont une fonctionnalite qui reinitialise automatiquement le GPU s'il est gele depuis environ 2 secondes. Malheureusement, certains pilotes repondend encore assez mal a ca (sous Windows on a encore de beaux plantages bleus). C'est vraiment triste, mais on n'a pas vu beaucoup d'utilisateurs souffrir de ca dans le monde reel, et au moins ca a mene a de bonnes conversations avec les fabricants de GPUs et les choses sont en bonne voie, meme si ca prend du temps.

Conclusion

Voici les trois pires sortes de vulnerabilites liees a WebGL que j'ai personnellement rencontrees. Les techniques de securite que certains considerent comme l'Alpha et l'Omega de la securite des navigateurs, ne peuvent rien contre ces vulnerabilites. Je ne veux pas dire que ces techniques ("sandboxing", separation en multiples processus...) sont inutiles en general: elles sont extremement utiles, mais elles sont inutiles pour les bugs securite qui ont ete les plus inquietants dans ma propre et humble experience. Ceci veut au moins dire que la securite des navigateurs ne se resume pas a ces techniques, comme ces articles de securite que j'ai mentionnes au debut voudraient le faire croire.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

