

Journal Une idée à prendre : un nouveau type de serveur d’affichage (remplaçant X ou Wayland)

Posté par Benoit Jacob (site web personnel) le 28 janvier 2016 à 03:57.
Licence CC By‑SA.

Étiquettes :

	firefox

[image:]

Sommaire

	
Un peu de contexte
	Un problème : la latence

	Un autre problème : la fluidité d’animation

	Encore un autre problème : gâchis de bande passante mémoire

	Un problème plus abstrait : empiètement entre deux systèmes client‐serveur entrecroisés

	
L’idée !
	Explication

	Avantage : latence minimale

	Avantage : fluidité quasi‐parfaite

	Avantage : bande passante mémoire

	Avantage plus abstrait : simplification des grosses applications et frameworks

	P.‐S. sur la sécurité

Voici un journal un peu bizarre : je crois avoir l’idée de projet libre qui tue, mais je n’ai pas le temps de l’exécuter moi‐même ! Alors la voici, dans l’espoir que quelqu’un la prenne…

Un peu de contexte

L’idée est de mettre au point un nouveau type de serveur d’affichage, donc un remplacement de (la partie affichage de) X ou de Wayland.

Le serveur d’affichage est la partie d’un système d’exploitation qui a le monopole de l’écran. Il permet à des clients (des applications GUI par exemple) d’afficher des informations à l’écran.

Les serveurs d’affichage traditionnels (ceci inclut X et Wayland) fonctionnent sur le principe du framebuffer. Chaque fenêtre soumet un gros bitmap qui représente son contenu. Le serveur d’affichage se charge de les porter à l’écran, généralement en utilisant un compositeur.

Pour éviter des bugs graphiques si une fenêtre change son contenu pendant que le compositeur le porte à l’écran, on a recours a du multi‐buffering : chaque fenêtre dessine dans un premier framebuffer appelé le backbuffer, puis le soumet au serveur d’affichage, dans une file (FIFO) de framebuffers, dont le dernier, appelé frontbuffer, est porté à l’écran. La longueur de la file varie, en fonction du compromis voulu entre latence et fluidité : typiquement 3 (triple buffering), mais jusqu’à une dizaine pour un pipeline vidéo.

Ce modèle a des avantages : une certaine simplicité, une stricte séparation du code graphique entre les applications et le système d’exploitation. Mais il a aussi des inconvénients.

Un problème : la latence

Le plus gros inconvénient est qu’il peut s’écouler un certain temps entre le moment où une fenêtre met à jour son contenu, et le moment où ce contenu apparaît à l’écran. On appelle ça la latence.

Récemment on a vu émerger de nouveaux pipelines plus complexes qui viennent se superposer à l’existant. Par exemple, les pages Web sont devenues si complexes, consistant en de nombreuses couches, que le navigateur doit exécuter son propre compositeur pour obtenir le rendu final de sa fenêtre, avant de la présenter au serveur d’affichage. On a ainsi deux systèmes superposés, ce qui double la latence d’affichage !

Dans le cas de pipelines complexes, par exemple une page Web utilisant WebGL dans un navigateur a exécution distante de commandes graphiques comme Chrome, la latence peut facilement excéder un frame. Ainsi l’utilisateur voit toujours un frame en retard ! Ce qui peut suffire à rendre une plateforme comme le Web non compétitive pour certains types d’applications (jeux en 3D rapides).

Un autre problème : la fluidité d’animation

Les « vieux » parmi nous nous souvenons de la fluidité saisissante des animations ce certains anciens jeux vidéo qui programmaient directement le CRTC (les programmeurs d’Epic Pinball avaient bien réussi leur coup !). Plus près de nous, difficile de ne pas voir que les animations paraissent parfois plus fluides dans un jeu en plein écran que dans une fenêtre, ou dans un jeu natif plutôt que dans un jeu WebGL, ou sur une console de jeux plutôt que sur un PC. Il y a une bonne raison à tout ça, et ça nous amène un peu plus près de ce dont je veux parler.

La fluidité apparente d’une animation dépend de plusieurs facteurs. On parle souvent de framerate, le nombre d’images par seconde, mais le cerveau humain ne mesure pas un nombre d’images par seconde. Ce qui compte vraiment, c’est que la trajectoire réelle de l’image à l’écran soit régulière. Avoir un bon framerate est une condition nécessaire, pas suffisante. Il faut aussi que l’application positionne correctement les éléments animés par rapport à la date réelle où l’image sera portée à l’écran.

Le problème est bien entendu que la date d’affichage à l’écran peut être très différente de la date de rendu par l’application… la différence entre les deux est la latence dont nous avons parlé plus haut !

Si cette latence est parfaitement constante, l’animation devrait quand même paraître fluide. Mais si la latence est variable, ce qui devient inévitable avec la complexité des applications d’aujourd’hui, il peut être impossible pour l’application de présenter une animation vraiment fluide ! Avec des systèmes de plus en plus complexes (WebGL est un exemple), on est de plus en plus dans ce cas de figure. Les navigateurs tentent de compenser en fournissant au requestAnimationFrame callback une date faussée, pour compenser. Mais ce calcul est bien difficile et bien fragile, et le résultat est rarement parfait.

Encore un autre problème : gâchis de bande passante mémoire

Prenez un jeu en 3D. D’un frame au suivant, la scène est presque la même, mais tous les pixels ont légèrement changé de couleur : il faut redessiner un nouveau framebuffer, et lui faire traverser à nouveau tout le pipeline. Serait‐il possible d’imaginer un système où ce qui doit traverser tout un pipeline est quelque chose qui change moins d’un frame au suivant ? D’autre part, un framebuffer est gros : typiquement 10M aujourd’hui. Pourrait‐on espérer avoir un modèle où ce qui traverse tout le pipeline à chaque frame est un objet plus compact ?

Un problème plus abstrait : empiètement entre deux systèmes client‐serveur entrecroisés

Un paradigme client‐serveur tel que celui du serveur d’affichage a tendance a bien marcher tant que tout le système obéit à son modèle. Mais il y a environ 20 ans, quelque chose a commencé à changer :

OpenGL (de même que Direct3D) s’est popularisé vers 1996, et est lui aussi un système client‐serveur. Ici, le serveur est le pilote OpenGL qui a le monopole de la carte graphique (tandis que le serveur d’affichage a le monopole de l’écran), et le client est tout processus émettant des commandes OpenGL. Ainsi on a deux systèmes client‐serveur entrecroisés :

1 - clients = processus appelant OpenGL, serveur = pilote OpenGL

2 - clients = fenêtres des applications, serveur = serveur d’affichage

Sans rentrer dans les détails, cette situation transforme le paradis originel que devaient être les serveurs d’affichage en un enfer de complexité pour les applications qui ont besoin d’interagir efficacement dans les deux systèmes. Certains cas courants sont bien pris en charge (un jeu en 3D) mais dans le cas d’un navigateur Web, devoir jongler entre ces deux paradigmes cause beaucoup de complexité.

L’idée !

Voici l’idée que je voudrais voir quelqu’un qui a le temps, mettre en œuvre.

En une phrase, pour ceux qui connaissent : il faut inventer un nouveau type de serveur d’affichage où la communication entre client et serveur se fait non plus en termes de framebuffers mais en termes de command buffers.

Explication

Une évolution récente des API graphiques (Vulkan, Direct3D 12, Mantle, Metal…) est de permettre à l’application d’assembler des command buffers, représentant un ensemble de commandes graphiques susceptibles d’être exécutées plus tard. Jusqu’à présent, les API graphiques géraient ceci de façon implicite : les appels étaient bien asynchrones, mais l’application n’avait pas de contrôle là‐dessus.

Certaines applications comme Chrome n’ont pas attendu ces nouvelles API pour mettre en œuvre ce genre d’idées : dans Chrome, chaque processus assemble des command buffers puis les envoie à un GPU process pour être traduit en vraies commandes OpenGL, ce qui permet de centraliser les commandes graphiques dans un seul processus, ce qui est un moyen de contourner plusieurs limitations de OpenGL.

Les successeurs d’OpenGL, comme Vulkan, généralisent cette idée de command buffers. L’idée est de rendre explicite, sous le contrôle de l’application, l’idée que les commandes graphiques sont généralement exécutées plus tard qu’elles sont assemblées.

Ci‐dessus, quand nous parlions de latence, le problème était justement que les commandes graphiques sont exécutées trop longtemps en amont de leur affichage réel à l’écran.

Tant que le serveur d’affichage exige que chaque fenêtre lui présente un framebuffer déjà finalisé, ce problème est inévitable.

Alors, peut‐on envisager un autre système, où le serveur d’affichage recevrait de la part de chaque un autre type d’objet qu’un framebuffer ? Que serait ce type d’objet ?

… un command buffer, pardi !!!

Ainsi, les applications n’exécuteraient plus leurs propres commandes graphiques. Au lieu de ça, elles les communiqueraient sous forme de command buffers au serveur d’affichage qui

Il s’agit du coup bien entendu d’un projet très lourd, qui supposerait d’écrire un remplacement de X/Wayland, et qui demanderait aux applications et toolkits d’êtres adaptés !

Ce qui me fait espérer que ce projet ait quand même une chance de réussir, c’est qu’il offrirait des avantages uniques, bien visibles pour l’utilisateur.

Avantage : latence minimale

Cet avantage est une conséquence immédiate du modèle ! En différant l’exécution des commandes graphiques à la dernière minute dans le serveur d’affichage lui‐même, on minimise la latence entre ce moment et celui où l’image atteint l’écran.

Bien entendu, il faut que l’application soit bien écrite pour en tirer partie : concrètement, il faut que les vertex shaders, qui positionnent les objets à l’écran, lisent une date fournie dans une variable par le système d’affichage lui‐même, pour adapter le positionnement des objets graphiques à cette date « tardive ».

Avantage : fluidité quasi‐parfaite

C’est probablement ce qui sauterait aux yeux si on avait une démo d’un tel système. Le système décrit ci‐dessus, où les vertex shaders positionneraient les objets en fonction d’une date fournie par le serveur d’affichage lui‐même, résout le problème de fluidité en donnant intrinsèquement des dates très proches de la date réelle d’affichage à l’écran, et, encore plus important, avec une latence quasi‐constante car tout désormais se passe du même côté, dans le serveur d’affichage.

Avantage : bande passante mémoire

Un command‐buffer est typiquement bien plus compact en mémoire que le framebuffer qui est son résultat, donc ce serait plus économique d’avoir un pipeline de command‐buffers qu’un pipeline de framebuffers.

Encore mieux : typiquement, même un jeu 3D rapide peut être structuré pour que les command buffers restent presque identiques d’un frame au suivant. On pourrait donc imaginer un système de mises à jour partielles qui réduirait encore plus le coût.

Avantage plus abstrait : simplification des grosses applications et frameworks

Ceci fait écho au problème « abstrait » mentionné ci‐dessus. Le code graphique de Firefox lié ci‐dessus, ainsi que le code équivalent dans Chrome, se simplifierait beaucoup si on n’avait pas à gérer des pipelines de framebuffers.

Récemment, on voit aussi des systèmes d’exploitation faire des pas dans cette direction (CoreAnimation dans Mac OS X permet à une fenêtre de présenter une animation au serveur d’affichage). Adopter le paradigme décrit ici permettrait d’offrir une solution aux mêmes problèmes de façon moins ad hoc, demandant moins d’adaptation spécifique de chaque application, couvrant bien plus de cas d’utilisation.

P.‐S. sur la sécurité

Je sais bien que ça ne va pas être évident de rendre cette approche viable question sécurité. Mais, ayant travaillé sur les débuts de WebGL à Mozilla, j’ai l’impression d’avoir déjà vu une situation de ce type. Je vois plusieurs problèmes de sécurité à résoudre et plusieurs façon de les résoudre, mais je ne pense pas que ça soit très utile d’en parler maintenant. Ça serait mettre la charrue avant les bœufs : si on n’avait que des questions de sécurité à résoudre, on serait heureux !

Pour le moment, dans ce projet, on n’a rien du tout, et comme je l’ai dit au début, je n’ai pas le temps de le faire moi‐même en ce moment. J’espère vraiment que ce journal inspirera quelqu’un ici.

Si vous voulez vous lancer, laissez‐moi suggérer un nom pour ce projet : frameless. Un nom plus descriptif serait « framebuffer‐less » mais frameless fait plus court et un peu mystérieux : ira‐t‐on jusqu’à abolir un jour la notion de frame ? Y a‐t‐il une analogie avec un noyau tickless ?

À vous de jouer !

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

