

Journal Portage de TapTempo en Ada

Posté par Blackknight (site web personnel, Mastodon) le 26 février 2018 à 23:33.
Licence CC By‑SA.

Étiquettes :

	taptempo

	ada

[image:]

Sommaire

	
Première version
	La structure

	Les types

	La procédure Run

	Seconde version

	Conclusion

Et voilà, à peine développé et déjà un fork :)

Suite au journal de mzf, j'ai décidé de porter le taptempo en Ada.

Pourquoi faire ? Juste pour le plaisir :)

Et puis aussi parce que le logiciel était suffisamment court pour faire un portage rapide et montrer différents aspects d'Ada sur un programme déjà existant en C++.

Après une version Rust, voici donc, comme promis, la version Ada et sa petite explication… Enfin, deux versions.

Première version

La première version que j'ai décidé de vous présenter est un portage direct du code C++ avec quelques ajouts typiquement Ada-esques. C'est facile, le code est là.

La structure

Le programme est découpé en plusieurs morceaux:

- la procédure adataptempo faisant office de programme principal

- le package Options, dépendant de la bibliothèque Parse_Args, permettant de gérer les options du programme

- le package TapTempo définissant les types nécessaires ainsi que le fonctionnement complet du taptempo

Les types

C'est par ce dernier package que je vais commencer.

Il définit les types suivants:

 type Tap_Tempo is private;

 subtype Sample_Size is Count_Type;
 type Seconds is new Positive;
 type Precision is range 0 .. 5;

Les types Sample_Size, Seconds et Precision permettent de spécifier les contraintes du problème. On voit là un des avantages par rapport au type size_t, les types étant d'une part, incompatibles entre eux et d'autre part, beaucoup plus contraints.

Cela permet notamment de se passer des tests suivants, ces valeurs n'étant pas dans la plage acceptable

if(this->sampleSize == 0)
 {
 this->sampleSize = 1;
 }

 if(this->resetTimeInSecond == 0)
 {
 this->resetTimeInSecond = 1;
}

Le type Precision se passe d'explication :)

Enfin, le type Tap_Tempo est déclaré privé et donc sa définition n'est pas accessible à l'extérieur du package. Il faut donc définir une sorte de constructeur. C'est ce qui est fait au travers de la fonction Build.

 function Build
 (Size : Sample_Size := 5;
 Reset_Time_In_Second : Seconds := 5;
 Precision_Needed : Precision := 0) return Tap_Tempo;

Mais du coup, c'est quoi la définition de notre objet privé ?

 -- Time vector type
 package Time_Vectors is new Ada.Containers.Vectors(Index_Type => Positive,
 Element_Type => Time);
 use Time_Vectors;

 type Tap_Tempo is record
 Size : Sample_Size := 1;
 Reset_Time_In_Second : Seconds := 1;
 Precision_Needed : Precision := 1;
 Time_Vector : Time_Vectors.Vector;
 end record;

Une petite explication sur les premières lignes s'impose.

Il s'agit de l'instanciation d'un package générique standard pour la gestion des vecteurs.

Pourquoi vecteur et pas queue ? Parce qu'Ada ne fournit pas en standard de queue simple mais uniquement des queues synchronisées dans le cadre de la programmation multitâches ce qui impose beaucoup trop de contraintes pour notre cas simple.

Ensuite, le Tap_Tempo n'est finalement qu'un simple enregistrement, même pas objet :D

Et c'est sur ce type que l'on définit la procédure Run

 procedure Run (Tempo : in out Tap_Tempo);

On remarquera au passage l'utilisation de in out qui permet de voir que l'on modifiera l'objet dans la procédure, le vecteur en fait.

La procédure Run

Il s'agit d'un simple portage ligne à ligne du code C++ mais quelques petits zooms sur ce code permettront de voir une ou deux spécificités Ada.

Une première spécificité est liée au système de types. En effet, la procédure Get_Immediate renvoie un caractère et non un simple entier. Cela permet donc d'expliciter la clause de sortie de boucle :

 exit when (Key = Ada.Characters.Latin_1.LF);

Personnellement, je préfère ça, sans aucune arrière-pensée, à

} while (i != 10);

Deuxième spécificité qui peut surprendre le développeur C/C++ voire Java, le test permettant de savoir que l'on a trop attendu

 if (not Is_Empty (Tempo.Time_Vector)
 and then Is_Reset_Time_Elapsed(Tempo,Current_Time,First_Element (Tempo.Time_Vector)))

En Ada, dans le cas d'une opération logique, tous les termes sont évalués ce qui pose ici problème car le premier a pour but d'éviter de faire le second test. Finalement, on dit bien ce que l'on fait à savoir si…et alors….

Il y aurait encore des choses à dire sur tout ce package mais bon, ce n'est qu'un journal et il est tard alors je répondrai aux questions si besoin dans les commentaires :D

Du coup, voyons ce que l'on peut faire de plus.

Seconde version

Cette seconde version part d'un constat simple, le taptempo utilise l'entrée standard qui n'est pas protégée pour les accès concurrents. De plus, quel est l'intérêt d'avoir plusieurs instances du taptempo ?

J'aurai tendance à dire aucune… Surtout que ça m'arrange :D

En C++, la technique est d'utiliser le patron de conception du singleton. Il se trouve que celui-ci est très simple à implémenter en Ada.

En effet, contrairement aux namespaces C++, le package Ada est une unité de compilation et d'encapsulation à part entière. Ainsi, il est possible de "cacher" un état dans le corps d'un package et a fortiori, notre file.

package body TapTempo is

 -- Time vector type
 package Time_Vectors is new Ada.Containers.Vectors(Index_Type => Positive,
 Element_Type => Time);
 use Time_Vectors;

 Time_Vector : Time_Vectors.Vector;

Il suffit ensuite de déplacer les paramètres de configuration dans la méthode Run comme suit

procedure Run
 (Size : Sample_Size := 5;
 Reset_Time_In_Second : Seconds := 5;
 Precision_Needed : Precision := 0);

Du coup, plus besoin de construction d'un objet Tap_Tempo dans la procédure principale adataptempo mais on a seulement besoin d'appeler Run.

Voilà, il n'y a pas de révolution dans cette seconde version mais le but était juste de montrer l'utilité des packages et leur capacité à fournir de l'encapsulation et donc une portée en plus d'un espace de noms.

Bien sûr, vous trouverez tout ce code ici.

Conclusion

J'ai pris plaisir à faire ce petit portage qui m'a, au passage, permis d'essayer la bibliothèque Parse_Args pour la gestion des options.

En espérant que ce "petit" journal vous ait plu… Place aux commentaires !

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars965003000avatar.jpg

