

Journal Découvrir MetaOCaml dans son navigateur

Posté par gasche le 12 novembre 2016 à 17:57.
Licence CC By‑SA.

Étiquettes :

	ocaml

	programmation

	recherche

[image:]

Ce journal a été promu en dépêche : Découvrir MetaOCaml dans son navigateur.

OCaml est un langage de programmation généraliste, fonctionnel et statiquement typé.

MetaOCaml est une extension, un dialecte non-standard du langage qui a une longue histoire. Dérivée de MetaML il y a environ 15 ans, c'est toujours resté un prototype de recherche, avec une base d'utilisateur petite mais active au fil des années—au contraire de la plupart des prototypes de recherche qui meurent de mort naturelle assez vite. Le "Meta" dans le nom fait référence à la méta-programmation, l'écriture de programmes qui manipulent de programmes, et MetaML et MetaOCaml sont dans la catégorie de la méta-programmation "étagée" (staged), où il y a un nombre arbitraire de "niveaux d'exécution" qui construisent des morceaux de programme des niveaux précédents et les font tourner. (Par opposition il y a des langages où il y a un nombre fixe de niveau, par exemple "statique / à la compilation" et "dynamique / à l'exécution", comme en C++ ou D, beaucoup de langage à "macros" où la méta-programmation se résume à une passe de récriture de code, et des langages où la notion de niveaux est plus floue et plus complexe, et est combinée avec des récritures syntactiques de nature un peu différente et moins structurée, comme en Scheme, Lisp ou Racket).

Une façon de penser à MetaOCaml, c'est que c'est un langage pour décrire des optimisations de la forme "et si on spécialise comme-ci ou comme-ça à la compilation, on peut obtenir du super code au final", mais où la distinction entre ce qui est spécialisé "à la compilation" et ce qui est exécuté au final est explicite, elle ne repose pas sur l'intelligence du compilateur mais sur des marqueurs explicites insérés par le programmeur ou la programmeuse. (Il y eu beaucoup de recherche sur l'évaluation partielle comme super-optimisation, et le consensus de la communauté c'est que c'est puissant mais trop fragile / difficile à prévoir pour qu'on puisse laisser le compilateur le faire sans guidage humain).

Un récent exemple d'utilisation de la technique est Stream Fusion, to Completeness, un article qui utilise cette forme de méta-programmation pour optimiser des programmes décrivants des manipulants de flôt de données, avec une version en OCaml (utilisant MetaOCaml) et une version en Scala (utilisant "LMS", Lightweight Modular Staging, une autre approche de la méta-programmation par étage), et qui implémentent comme une librairie des optimisations puissantes de "fusion" qui sont traditionellement espérées du compilateur. (Ce travail va être présenté à Paris en janvier 2017, puisque les universités Paris 6 et Paris 7 accueillent et organisent cette année une des principales conférences de recherche en langages de programmation, et d'ailleurs si vous êtes étudiants et que vous voulez y aller et manger sur place mais pas payer les frais d'inscriptions vous pouvez vous proposer comment volontaire pour aider.)

Ne nous laissons pas distraire. Le sujet de ce journal c'est un cours sur MetaOCaml disponible en ligne, créé par Jeremy Yallop à l'université de Cambridge, C'est une sous-partie du cours Advanced Functional Programming, qui s'adresse à des gens connaissant déjà la programmation fonctionnelle mais pas forcément ses aspects les plus avancés. La partie sur MetaOCaml est à la fin, et elle est disponible (comme le reste) sous la forme de cahiers interactifs dans le navigateur (ça utilise IOCamlJS, un noyau IPython/Jupyter pour OCaml):

	cours 1

	cours 2

	cours 3

Voilà, bonne lecture.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/4b2f7aaf9069f93f077e99ab9cb270c16df603e75b9c3eb6beb03c8d

