

Journal R.I.P CIA.vc , et maintenant quoi?

Posté par case42 (site web personnel) le 13 mai 2013 à 17:39.
Licence CC By‑SA.

Étiquettes :
aucune

[image:]

J'avais l'habitude quand je travaillais en groupe d'utiliser les services du site CIA.vc afin de disposer sur un channel IRC de travail d'un bot notifiant tous les commits sur le système de version (Mercurial en ce qui me concerne).

Retravaillant en équipe après une pause, je ressentais le besoin de remettre en place un tel système, et quel ne fut pas mon effroi de constater que le site avait mis fin a ses activités, avec pour principale raison "IRC et subversion c'est hazbeen, maintenant c'est Twitter et Github qui sont hype et tendance".

Même s'il y a un peu de vrai la dedans (surtout pour subversion..), je n'ai pas vraiment envie de pousser mes notifications de commit sur Twitter, et j'auto-heberge très bien mes repository, je n'ai pas besoin de Github pour ça. Et vu que ma petite équipe est plus versée vers Gtalk que vers IRC, j'ai donc cherché (pas beaucoup j'admets) une solution a base d'XMPP.

Bon ok, j'avais envie de me changer les idées et d’écrire un petit bot XMPP, voila, j'avoue.

Voila ma solution, en python, utilisant les packages JabberBot , ZeroMQ et Mercurial :

#!/usr/bin/env python

to make the mercurial hook work... black magic.
from mercurial import demandimport; demandimport.disable()

from jabberbot import JabberBot, botcmd
import sys
import optparse
import zmq

USERNAME = "mybot@jabber.net"
PASSWORD = "d4p455w0rD"
BIND_OPT = "tcp://127.0.0.1:5000"

class SystemInfoJabberBot(JabberBot):
 def idle_proc(self):
 result = self.socket.poll(10)
 if result != 0:
 msg = self.socket.recv()
 for user in self.roster.getItems():
 if user != USERNAME:
 print "send: ", user, ":", msg
 self.send(user, msg)

def server():
 print "starting server..."
 bot = SystemInfoJabberBot(USERNAME,PASSWORD)

 context = zmq.Context()
 bot.socket = context.socket(zmq.SUB)
 bot.socket.bind(BIND_OPT)
 bot.socket.setsockopt(zmq.SUBSCRIBE, "")

 bot.serve_forever()

def client(msg):
 print "sending '"+msg+"'"
 context = zmq.Context()
 socket = context.socket(zmq.PUB)
 socket.connect(BIND_OPT)
 socket.send(msg)
 print "message sent."

def hghook(ui, repo, hooktype, node=None, source=None, **kwargs):
 for rev in xrange(repo[node].rev(), len(repo)):
 r = repo[rev]
 message = "["+repo.root+"] "+str(rev)+":"+r.hex()+" by "+r.user()+" : \""+r.description()+"\" "+str(r.changeset()[3])
 client(message)

if __name__ == "__main__":
 parser = optparse.OptionParser()
 parser.add_option('-m', '--message', help='send a message')
 parser.add_option('-s', '--server', action='store_true', help='run as server')
 args = parser.parse_args()

 if args[0].server == True:
 server()
 elif args[0].message:
 client(args[0].message)
 else:
 parser.print_help()

le script est lancé comme daemon sur le serveur avec l'option --server et se comporte comme un bot xmpp et un "receveur" ZeroMQ .

Dans le fichier .hg/hgrc de mon projet, j'ai rajouté:

[hooks]
changegroup = python:/path/to/the/script.py:hghook

Le script peut également être utilise en ligne de commande pour envoyer un message de test avec l'option -m "un message"

Voila, c'est du "home made" vite fait mal fait qui fait tout de même bien le boulot.

Et vous, qu'utilisez-vous pour suivre les commits de vos repository?

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars300028000avatar.jpg

