

Journal FuncSug, encore un nouveau langage de programmation concurrent

Posté par cli345 le 20 mars 2023 à 16:17.
Licence CC By‑SA.

Étiquettes :

	langage_de_programmation

[image:]

Ce langage est incomplet dans le sens où vous verrez souvent {js ...} qui permet d'inclure du code JavaScript.

Alors quel avantage a-t-il ? Mon but était de permettre une structure de code plus naturelle et plus lisible (Je sais, c'est subjectif).

Pour le voir, je propose de commenter très brièvement ici le code (simplifié) de l'aquarium.

La partie principale du code

{par
 *supplLifeOf
 (lifeOfFish 'Mérou' 0)
 (lifeOfFish 'Mérou' 1)
 (lifeOfFish 'Thon' 0)
 (lifeOfFish 'Thon' 1)
 (lifeOfFish 'Poisson-clown' 0)
 (lifeOfFish 'Poisson-clown' 1)
 (lifeOfFish 'Sole' 0)
 (lifeOfFish 'Sole' 1)
 (lifeOfFish 'Bar' 0)
 (lifeOfFish 'Bar' 1)
 (lifeOfFish 'Carpe' 0)
 (lifeOfFish 'Carpe' 1)
}

par est une instruction FuncSug permettant de lancer des blocs de code en parallèle.

*supplLifeOf permettra de rajouter dynamiquement des branches parallèles supplémentaires.

lifeOfFish est le nom d'une fonction (qui est définie avant dans le code, j'en parle juste après).

(lifeOfFish 'Thon' 0) appelle la fonction lifeOfFish avec les arguments 'Thon' et 0.

Ainsi, tous les appels de fonction lifeOfFish sont lancés et s'exécutent en parallèle.

Nous allons voir que lifeOfFish est une fonction qui fait naître le poisson et continue de s'exécuter jusqu'à sa mort.

La fonction lifeOfFish

Voilà le code de la fonction :

{deffunc lifeOfFish (p_race p_sexe)

 # naissance
 #==========

 # dessin du poisson, etc.
 .var thisFish <-- (drawNewFish 100 30 0)
 ...

 # après la naissance
 #===================

 {par @life

 # gestion des collisions
 #-----------------------
 {whileTrueAwaitFrame `

 // ---> Début de code JavaScript <---

 // collisions
 //-----------
 for (const otherFish of ...) {
 // Quand des poissons se rencontrent, ça génère une nouvelle naissance
 if (colliObj(thisFish, otherFish)) {
 sugBip('newBirth')
 }
 }

 // fin de vie si ...
 //------------------
 if (...) sugBreak('life')

 // ---> Fin de code JavaScript <---
 `}

 # gestion des naissances
 #--------------------------------
 {whileTrue
 # on attend un signal 'newBirth'
 :await newBirth beep
 # on ajoute une nouvelle branche parallèle branch dans le bloc 'par' qui a '*supplLifeOf'
 {spawn supplLifeOf
 (lifeOfFish $p_race 0)
 }
 }

 # mouvements du poisson
 #----------------------
 {whileTrueAwaitFrame `
 // ---> Début de code JavaScript <---
 thisFish.setAttribute('x', thisFish.x + thisFish.dx)
 thisFish.setAttribute('y', thisFish.y + thisFish.dy)
 // ---> Fin de code JavaScript <---
 `}
 }

 # mort
 #=====
 # suppression du poisson de l'aquarium
}

{deffunc lifeOfFish (p_race p_sexe) ...} permet de définir une fonction à deux arguments p_race et p_sexe.

.var maVariable <-- maValeur permet de déclarer une variable et de l'initialiser.

Après la naissance, le poisson gère plusieurs choses à la fois (c.-à-d. en parallèle) :

	Les collisions avec les autres poissons

	La naissance de ses enfants

	Ses propres mouvements

Il y a donc une instruction par avec les trois blocs correspondants. @life est juste une étiquette pour pouvoir référencer le bloc par (notamment pour l'instruction ```sugBreak('life') qui interrompt le bloc).

L'instruction whileTrueAwaitFrame permet d'exécuter du code JavaScript à chaque rafraichissement d'écran. Dans ce code JavaScript, on peut utiliser sugBip pour lancer un signal FuncSug ou sugBreak pour interrompre un bloc FuncSug.

L'instruction {spawn monEtiquetteEtoile monNouveauBloc} permet d'ajouter dynamiquement monNouveauBloc dans le bloc par dont le premier élément est *monEtiquetteEtoile.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars830088000avatar.jpg

