

Journal Écrire une page web de nos jours, troisième partie


Posté par CrEv (site web personnel) le 02 janvier 2013 à 14:17.
Licence CC By‑SA.

Étiquettes :

	html

	web











[image: ]



Sommaire

	
Con tenu


	
Marc donne. Oui, mais Marc donne quoi déjà ?


	
Couleuvres


	
Et maintenant ?


	
haml et markdown


	
Je pars à maître


	
Petit bonus


	
Conclusion



Hey !


Ça y est, vous avez bien suivi la première et deuxième [1] partie de "Écrire une page web de nos jours" et vous pensez être devenu un Dieu de l'achetaihèmaille ? Vous auriez tort !


Vous pensiez qu'un peu de haml, sass, ruby, rake, gem, git, bundler, guard, guard-rake ou encore coffeescript suffisait ? 



[image: looooser !]



Allez, il est temps de passer aux choses sérieuses et voir comment markdown, haml (oui encore lui) et ruby (toujours lui) peuvent réellement enlarger votre productivité devis et faire de vous un vrai développeur web !


Note : contrairement aux premiers épisodes, celui-ci ne montre pas l'intégralité du boulot, mais détaille les étapes et concepts principaux. Le résultat final n'est pas directement disponible, mais sera l'objet d'un prochain article, plus spécifique au projet dans son ensemble.

Con tenu


C'est bien joli, vous avez une superbe page oueb qui rox des mamans ours. Supaïr ! Mais, maintenant, il serait temps de passer aux choses sérieuses et là, comment dire… le haml say nul !


Ben oui, vous vous voyez, sérieusement, écrire votre prose comme ça :


%p
  C'est bien joli, vous avez une superbe page oueb qui rox des mamans ours. Supaïr ! Mais, maintenant, il serait temps de passer aux choses sérieuses et là, comment dire...
  %i
    le
    %a(href="http://haml.info/")
      haml
    say nul
  !



Ou alors, vous préférez écrire comme ceci :


C'est bien joli, vous avez une superbe page oueb qui rox des mamans ours. Supaïr !
Mais, maintenant, il serait temps de passer aux choses sérieuses et là, comment dire...
_le [haml](http://haml.info/) say nul_ !




Ouah !!! Livre-nous ton secret ô maître ! Quelle est cette syntaxe si magnifique !




Comment ça, je rêve ? Pffff, c'était mieux à vent !


Ok, vous l'aurez tous compris, on va parler de markdown parce que c'est hype !


Sachez, pour la forme, qu'il existe d'autres choses plus ou moins équivalentes, comme reStructuredText ou Textile.

Marc donne. Oui, mais Marc donne quoi déjà ?


Markdown, c'est juste la syntaxe de texte enrichi la plus en vogue en ce moment. On la retrouve partout, sur github, sur stack* et même sur da linux french page, c'est dire !


Ha ok, vous connaissez déjà. Bien bien, passons donc aux choses sérieuses : faire du markdown en ruby !


Pour pouvoir transformer du markdown en html, on va évidemment utiliser des gems !


La plupart du temps, Maruku ou rdiscount sont utilisés. Mais comme on ne veut pas faire comme les autres, on va utiliser redcarpet !


Comme d'habitude, ça se fait facilement en ruby. Tout d'abord, ajouter la gem au fichier Gemfile :


gem 'redcarpet'



Puis l'installer :


bundle



À ce moment vous pouvez commiter le fichier Gemfile mais aussi le Gemfile.lock.


Ensuite, si vous avez un fichier markdown plop.md à convertir, rien de plus simple avec ce petit bout de ruby :


require 'redcarpet'

markdown = Redcarpet::Markdown.new
html = markdown.render File.read 'plop.md'



Et voilà !


Évidemment, vous pouvez faire plus de chose, mais pour ça allez lire la doc de redcarpet.

Couleuvres


Avant d'aller plus loin dans l'intégration, arrêtons-nous un instant. Ok, on a du markdown qui se transforme en html. Cool. Mais il manque la fonctionnalité absolument indispensable : la mise en couleurs du code source !


Ben oui, vous vouliez vous servir du markdown pour quoi d'autre que présenter du code source ?


Vous connaissez pygments ? Ben, ça tombe bien, c'est ce qu'on va utiliser ! Enfin, via un wrapper ruby quand même, pas question d'utiliser un truc en python ici !


On va juste faire comme d'habitude. D'abord rajouter la gem qui va bien :


gem 'pygments.rb'



Et l'installer :


bundle



Puis améliorer un peu le script ruby :


require 'redcarpet'
require 'pygments'

class HTMLwithPygments < Redcarpet::Render::HTML
  def block_code(code, language)
    Pygments.highlight(code, :lexer => language)
  end
end

markdown = Redcarpet::Markdown.new(HTMLwithPygments, :fenced_code_blocks => true)
markdown.render File.read 'plop.md'



Et voilà, si vous avez du code entre trois (ou plus) backticks il sera mis en forme. Et, en plus, c'est compatible avec linuxfr ce qui est absolument obligatoire !

Et maintenant ?


Quoi ? Vous avez du haml, du sass, du ruby, du bundler, du rake, du guard, du rake, du markdown, etc. et vous n'êtes pas encore satisfait ? Comment ça, ça sert à rien tout ça si on ne peut pas inclure le markdown dans la page oueb ?


Bon, c'est facile : vous lancez rake ou guard et ensuite, vous exécutez le markdown et enfin copier/coller dans le fichier html généré. Voilà !


Toujours pas content ?


Ok, on va faire un peu mieux alors…

haml et markdown


Lorsqu'on transforme un fichier haml en html, il est possible de lui passer un objet dont les membres vont pouvoir être appelés dans le haml. Si on crée un object qui lui va convertir le markdown en html via une méthode (qu'on va appeler content) alors rien de plus simple pour intégrer votre fichier markdown en haml !


Tout d'abord, on va changer un peu le fichier haml pour qu'il ressemble à ça :


!!! 5
%html(lang="en")
  %head
    %meta(charset="utf-8")
    %link(rel="stylesheet" type="text/css" href="application.css")
    %title= "Écrire une page web de nos jours"

  %body(class="blue")
  = content



On va aussi prendre un fichier markdown, plop.md qui ressemble à ça :


# Yeah !

Supaïr, je suis un fichier markdown !

Et je peux faire plein de trucs cool

* comme
* ceci



Et il convient ensuite de changer notre script ruby.


Initialement on avait un bloc content ceci :


haml = IO.read("index.haml")
hamlengine = Haml::Engine.new(haml)
html = hamlengine.render()

File.open("_site/index.html", "w") { |f| f.write(html) }



On va donc ajouter une classe gérant notre markdown :


class Content
  def content
    markdown = Redcarpet::Markdown.new(HTMLwithPygments, :fenced_code_blocks => true)
    markdown.render File.read 'plop.md'
  end
end



Et on va en passer une instance à notre convertisseur haml :


haml = IO.read "index.haml"
hamlengine = Haml::Engine.new haml
html = hamlengine.render Content.new

File.open("_site/index.html", "w") { |f| f.write(html) }



Et c'est tout ! Lorsque le haml sera transformé, il va appeler la méthode content de l'instance de Content qui va transformer le markdown en html et l'ajoutera au document.



Elle est pas belle la vie ?



Je pars à maître


Et oui, c'est bien joli tout ça, mais si on allait plus loin ? Et surtout, si on paramétrait tout ça.


Car là, dans le cas présent, ça permet de déléguer une partie du haml par du markdown. Mais, ce serait beaucoup plus sympa si on se concentrait sur le markdown qui indiquerait de lui-même dans quelle "page" haml il voudrait être rendu.


Dans cette optique et histoire de ne pas réinventer inutilement la roue, on va partir sur ce que fait jekyll. C'est-à-dire que le fichier markdown va comporter un entête qui va en indiquer différents paramètres.


Ces paramètres vont être séparés du reste du markdown par des tirets. Le contenu est simplement sous forme d'un yaml parce que say bien !


Voici un exemple de paramètres :


---
param: valeur du paramètre
param2: autre valeur
---

Suite du fichier...



Par contre, ce paramétrage ne devra pas être inclus dans la génération du html à partir du markdown.


On va donc remplacer le File.read 'plop.md' par quelque chose d'un peu plus évolué :


content = File.read 'plop.md'
datas = Hash.new
begin
  if content =~ /^(---\s*\n.*?\n?)^(---\s*$\n?)/m
    content = $'
    datas = YAML.load $1
  end
rescue => e
  puts "YAML Exception reading 'plop.md': #{e.message}"
end



Voici ce qui est réalisé :


	on lit tout le fichier

	extraction de l'entête si elle existe

	si c'est le cas :


	on récupère tout ce qui suit l'entête et on dit que c'est le vrai contenu markdown

	on parse l'entête yaml

	si ça foire on balance un message





Ok, mais pourquoi on fait tout ça déjà ? Ben on va simplement y placer un paramètre layout qui va avoir comme valeur le nom du fichier haml dans lequel insérer le html généré à partir du markdown. Ainsi, on se concentre sur le contenu réel (le markdown) et non sur la page oueb.


Si on veut refaire l'exemple précédent avec ce principe, on aurait d'abord ceci en tête de notre plop.md :


---
layout: index.haml
---



et le ruby ressemblerait à quelque chose du genre :


class Content
  def initialize
    @content = File.read 'plop.md'
    @datas = Hash.new
    begin
      if @content =~ /^(---\s*\n.*?\n?)^(---\s*$\n?)/m
        @content = $'
        @datas = YAML.load $1
      end
    rescue => e
      puts "YAML Exception reading 'plop.md': #{e.message}"
    end
  end

  def content
    markdown = Redcarpet::Markdown.new(HTMLwithPygments, :fenced_code_blocks => true)
    markdown.render @content
  end

  def render
    haml = IO.read @datas['layout']
    hamlengine = Haml::Engine.new haml
    html = hamlengine.render self

    File.open("_site/index.html", "w") { |f| f.write(html) }
  end
end



Et on pourrait alors faire un


content = Content.new
content.render



qui lirait le markdown, irait chercher le haml nécessaire, rendrait le markdown lors de l'appel à content à l'intérieur du code haml.


Alors, elle est pas belle la vie ?


Évidemment, on peut imaginer chaîner l'ensemble. C'est-à-dire que le fichier haml peut aussi n'être qu'une sorte de fichier "partiel" et contenir lui-même un entête yaml.


Pour aller encore plus loin, on peut aussi rendre disponible le contenu de @datas, donc de l'entête. Soit en présentant un accesseur sur @datas, soit en ajoutant des accesseurs spécifiques, soit en utilisant method_missing. Quelle que soit la solution, le but est d'ajouter des méta-données, telles le titre, l'auteur, des liens, catégories, tags, etc. Finalement tout ce qu'on veut, de toute manière la majorité du boulot se fera par l'appel à ces données dans des fichiers haml.

Petit bonus


Et oui, comme c'est nowel, voici un petit bonus.


Dans votre fichier Gemfile (ou manuellement), ajoutez une référence à gollum. Il s'agit d'un éditeur / visualiseur markdown réalisé par github. Il permet donc de voir vos posts, d'en éditer le contenu au format markdown (il prend en charge en réalité d'autres types) et d'en avoir la prévisualisation. C'est tout de suite beaucoup plus sympa.


Donc installez gollum, rendez-vous dans le dossier concerné, par exemple _posts, et exécutez gollum. Enfin, rendez-vous à l'adresse http://localhost:4567/pages (oui le lien est pour pages car ça permet de lister les pages trouvées, étant donné qu'il n'y a pas de Home.


Vous pouvez maintenant éditer et visualiser vos posts, voire même en créer des nouveaux. Attention, lorsque vous enregistrez, cela fait un commit git.


Alors, sympa, non ?

Conclusion


Fin de la petite série de trois articles sur "Écrire une page web de nos jours". Mais non, ne pleurez pas, c'est pas tout à fait terminé ;-)


J'espère que cette série aura pu vous intéresser, au moins vous présenter quelques outils plutôt sympas qui pourraient vous être utiles, même si ça reste assez classique (le combo ruby, haml, coffeescript, sass est plutôt courant côté rails).


Le résultat de tout ceci est une vrai mise en application de tout ce que vous avez pu voir ici.


Les sources / explications seront bientôt disponibles, il ne manque qu'un petit coup de polish pour que ce soit présentable (un peu de doc, explications, etc.).


Bon web à tous !


[1]: "#{part_1}#{part_2}".to_linuxfr http://linuxfr.org/users/crev/journaux/ecrire-une-page-web-de-nos-jours




EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

EPUB/1ea5f42cf61b09391ef900c09e07de535dd0fc97107a0270fb61373f.gif





EPUB/avatars701017000avatar.jpg
S
SSat
A,

P,
H





