

Journal Écrire une page web de nos jours

Posté par CrEv (site web personnel) le 07 décembre 2012 à 12:29.

Étiquettes :

	web

	html

	ruby

[image:]

Sommaire

	
Partie 1
	
Contexte

	
Le html c'est surfait !

	
Ruby et rake, pour faire faussement compliqué

	
Et si on coloriait un peu ?

	
On devait pas parler de couleurs ?

	
On pousse le style un poil plus loin ?

	
Modification et mise en ligne

	
Il ne manquerait pas un truc ?

	
Et voilà !

	
Aparté

	
Aparté n°2

	
Partie 2
	
Introduction

	
Bendleure

	
Moins j'en fait, mieux je me porte !

	
L'inter a ctivité

	
Conclusion

	
Autre conclusion

Initialement je devais écrire le prochain numéro de De tout, de rien, des bookmarks, du bla-bla. Ensuite, je me suis mis en tête de créer une page web statique. Et voici ce que ça a donné !

Partie 1

J'aurais aussi pu l'appeler Le html c'est surfait !

Ces derniers jours, je me suis mis à la création d'une page web. En gros, il s'agit d'une simple page, totalement statique (pas de code serveur ni de code côté client). Allez, on va quand même mettre un peu de css histoire d'avoir un peu de style, et pour que ça reste relativement sobre, pas d'images.

Logiquement j'aurais pu prendre un éditeur de texte tout simple et écrire mon css et mon html (la page est vraiment petite).

Mais non, malheureux ! Tout le monde sait bien que l'html, c'est surfait aujourd'hui !

Voici donc dans la suite comment créer une petite page web tout simple en utilisant Haml, Sass, solarized, Font Awesome, ruby, rake et git, le tout en utilisant Sublime Text 2.

Ha oui, et histoire que ce soit drôle, vous verrez que j'ai collé pleins de liens partout pour faire genre, spéciale dédicace à… euh non, allez, restons sympa ;-)

Contexte

Déjà, précisons le contexte :

	une page web tout simple, comportant en gros un peu de bla bla et une liste d'items

	lisible

	pas trop moche si possible

	très facile à mettre à jour (ce qui arrivera de temps en temps)

Ok, une page html avec un peu de css posée sur un serveur fait le boulot. Mais c'était trop simple, allons bon !

Le html c'est surfait !

Déjà, le html c'est vraiment surfait. Faut réellement être un développeur de la vieille école pour écrire du PHP^W html à la main. Franchement, qui voudrait en écrire encore aujourd'hui ?

La solution (enfin l'une) se trouve donc dans haml. haml qui est un langage de balisage léger pour écrire des templates. C'est plutôt orienté ruby et ça se lit très facilement.

L'indentation est utilisée pour gérer l'enchainement des blocs plutôt que les balises ouvrantes/fermantes (comme en python ou coffeescript, par exemple).

Si on prend l'exemple haml sur wikipedia voici ce que ça permet.

Version html :

<div id="sidebar">
 <ul class="main">
 <li class="active">

 Accueil

 Nouvelles

 <li class="disabled">
 <a>Membres

</div>

Version haml :

#sidebar
 %ul.main
 %li.active
 %a{"href" => "accueil.html"}
 Accueil
 %li
 %a{"href" => "nouvelles.html"}
 Nouvelles
 %li.disabled
 %a Membres

Tout de suite, le gain est énorme ! Plus de syntaxe xml, plus lisible, indentation forcée, etc.

Ruby et rake, pour faire faussement compliqué

Le problème de tout ça, c'est qu'il faut maintenant transformer ceci en… html ! Ben oui, votre navigateur, il ne comprend pas le haml.

Heureusement, Ruby vole à notre secours !

Tout d'abord, il est nécessaire d'installer la gem haml :

gem install haml

Vous pouvez donc ensuite compiler votre fichier haml (index.haml) en fichier html (index.html) :

require 'haml'

haml = IO.read("index.haml")
hamlengine = Haml::Engine.new(haml)
html = hamlengine.render()

File.open("index.html", "w") { |f| f.write(html) }

Si vous appelez ce fichier compile.rb, il vous suffit d'exécuter la commande ruby compile.rb pour générer votre fichier html.

Facile, non !

Par contre, arrêtons de voir les choses en petit ! Un tel script n'est pas suffisant, il faut se dépasser un peu quand même !

Ce script va donc être placé dans un fichier Rakefile. Voici donc le contenu de ce fichier :

require 'haml'

task :default => :build

desc 'Build site'
task :build do
 haml = IO.read("index.haml")
 hamlengine = Haml::Engine.new(haml)
 html = hamlengine.render()

 File.open("_site/index.html", "w") { |f| f.write(html) }
end

Vous saisissez la différence ? Non ? Ben, pourtant elle est évidente, il suffit désormais d'exécuter la commande rake au lieu de ruby compile.rb !

Et si on coloriait un peu ?

Maintenant que la partie html est réalisée, passons un peu à la mise en style.

Précédemment, on utilisait essentiellement du css. Tout comme le html qui est désormais surfait, le css est également aujourd'hui une technologie quasi obsolète.

Heureusement pour nous, des petits gars bien malins nous ont concoqueté concocté Sass. Si vous avez compris ce qu'était haml par rapport à html, dites simplement qu'il en est de même à propos de Sass par rapport à css.

Sass est donc un pré-processeur css, vous permettant de l'écrire plus mieux, en enlargeant votre productivité. Il y a plein de possibilités bien sympa, comme les mixins, les nested rules et plein d'autres choses.

Lorsque vous écriviez précédemment, en css :

ul {
 color: red;
}
ul li {
 margin-left: 1em;
}
ul li.green {
 color: green;
}
ul li a {
 text-decoration: underline;
}
ul li a:hover {
 font-weight: bold;
}

Vous pouvez désormais écrire en Sass :

ul
 color: red
 li
 margin-left: 1em
 &.green
 color: green
 a
 text-decoration: underline
 &:hover
 font-weight: bold

Impressionnant, non !

Évidemment, pour pouvoir tout de même générer le css correspondant (car, pour rappel, ton navigateur, il ne comprend pas Sass), on va encore utiliser Ruby et la gem dédiée :

gem install sass

Voici donc un petit script pour transformer notre Sass (css/style.sass) en css (style.css) :

require 'sass'

sassengine = Sass::Engine.for_file("css/style.sass", :syntax => :sass, :style => :compressed)
css = sassengine.render()

File.open("style.css", "w") { |f| f.write(css) }

Mais comme on est des gens bien, on va surtout le rajouter au Rakefile précédemment créé afin qu'il ressemble à :

require 'sass'
require 'haml'

task :default => :build

desc 'Build site'
task :build do
 sassengine = Sass::Engine.for_file("css/style.sass", :syntax => :sass, :style => :compressed)
 css = sassengine.render()

 File.open("style.css", "w") { |f| f.write(css) }

 haml = IO.read("index.haml")
 hamlengine = Haml::Engine.new(haml)
 html = hamlengine.render()

 File.open("_site/index.html", "w") { |f| f.write(html) }
end

Et voilà ! Un simple appel à rake nous permet donc d'obtenir notre html et notre css !

On devait pas parler de couleurs ?

Ah si !

Puisqu'on y est, on ne va pas utiliser la feuille de style standard, say trop pour les loosers !

Tout d'abord, histoire que tout le monde ait la même trogne, on va commencer par utiliser la feuille de reset normalize.css. C'est une bonne alternative à beaucoup de feuilles de reset qu'on trouve habituellement et elle fait bien son boulot.

Ensuite, ben c'est simple, on va surtout utiliser les couleurs provenant de solarized. Il s'agit d'un ensemble de couleurs, plutôt bien homogènes, cohérentes entre elles et agréables à l'oeil. Parfait quoi !

Histoire de mettre aussi un peu de fun dans l'histoire, ajoutons quelques icônes. Mais comme on fait les choses biens, point d'image ! C'est trop surfait les images aussi ! Donc direction Font Awesome. Il s'agit d'une police de caractère orientée icônes. L'avantage est que c'est plutôt léger, vectoriel, coloriable facilement, propre, bien intégré à Twitter bootstrap, mais également utilisable sans. C'est propre, c'est net, c'est facile, que demander d'autre ?

Voici d'ailleurs le code Sass que j'ai utilisé pour ajouter mes quelques icônes dans ma page :

$fontAwesomePath: "font/fontawesome-webfont" !default

@font-face
 font-family: "FontAwesome"
 src: url("#{$fontAwesomePath}.eot")
 src: url("#{$fontAwesomePath}.eot") format('eot'), url("#{$fontAwesomePath}.woff") format('woff'), url("#{$fontAwesomePath}.ttf") format('truetype'), url("#{$fontAwesomePath}.svg#FontAwesomeRegular") format('svg')
 font-weight: normal
 font-style: normal

 font-family: FontAwesome
 font-weight: normal
 font-style: normal
 display: inline-block
 text-decoration: inherit

.icon-check-empty:before
 content: "\f096"

.icon-check:before
 content: "\f046"

.icon-envelope-alt:before
 content: "\f0e0"

.icon-phone:before
 content: "\f095"

.icon-comments-alt:before
 content: "\f0e6"

.icon-comments:before
 content: "\f086"

On pousse le style un poil plus loin ?

Histoire d'aller un tout petit peu plus loin, j'ai utilisé deux autres web fonts pour améliorer un peu la typographie. C'est pas grand chose, mais ça fait tout de suite la différence. C'est propre, léger, et agréable visuellement, alors pourquoi s'en priver ?

J'ai donc utilisé Numans, comme police de base et Josefin Sans pour les titres. C'est pas grand chose, mais le gain est réellement intéressant.

Voici le Sass correspondant :

@import url("//fonts.googleapis.com/css?family=Josefin+Sans:700")
@import url("//fonts.googleapis.com/css?family=Numans")

html, body
 font-family: "Numans", arial, helvetica, sans-serif
h1, h2, h3, h4, h5, h6
 font-family: "Josefin Sans", arial, helvetica, sans-serif

Modification et mise en ligne

Ah oui, l'objectif initial était également de pouvoir être facilement modifié et mis en ligne.

Pour la publication, c'est facile. J'ai simplement mis une règle deploy dans mon Rakefile qui effectue un rsync vers mon serveur web. Comme c'est du statique, je n'ai rien d'autre à faire, rien a redémarrer. La modification est donc instantanément en ligne.

Mon Rakefile a donc la tête suivante. Il faut tout de même prendre en compte que, pour simplifier les choses, je génère mon contenu dans un répertoire _site qui me permet de le pousser sans me soucier des fichiers sources.

require 'sass'
require 'haml'

task :default => :build

desc 'Build site'
task :build do
 sh 'mkdir _site'
 sh 'rm -rf _site/*'
 sassengine = Sass::Engine.for_file("css/application.sass", :syntax => :sass, :style => :compressed)
 css = sassengine.render()

 File.open("_site/application.css", "w") { |f| f.write(css) }

 haml = IO.read("index.haml")
 hamlengine = Haml::Engine.new(haml)
 html = hamlengine.render()

 File.open("_site/index.html", "w") { |f| f.write(html) }

 sh 'cp -R font _site'
end

desc 'Build and deploy'
task :deploy => :build do
 sh 'rsync --checksum -rtzh --progress --delete _site/ www:/var/www/plop'
end

Et voilà ! rake me compile mon projet, je peux aller le voir directement dans _site ou utiliser serve. rake deploy, quant à lui, me génère le contenu et le pousse sur mon serveur web.

Il ne manquerait pas un truc ?

Et si, il manque une dernière brique : git. En effet, tout le contenu source (donc _site omis) est versionné en utilisant git. Je n'utilise pas de serveur type github ou autre, j'ai juste créé un dépôt sur mon propre serveur de fichier. Je pousse alors via ssh, c'est très largement suffisant et je n'ai pas besoin de plus de droits, je suis le seul à bosser dessus. L'avantage est qu'un dépôt git se monte en un rien de temps et qu'une connexion classique suffit à le récupérer. Je peux alors rapatrier les sources sur une autre machine qui contient Ruby et les gem nécessaires et je peux alors le modifier, générer et pousser vers mon serveur !

Et voilà !

Et, voui, et voilà !

Ok, certains diront que c'est utiliser un bulldozer pour écraser une mouche et ils n'auront probablement pas tort. Quoi qu'il en soit, cela apporte une réelle plus-value en terme de confort. Et surtout, c'est une base réutilisable de nombreuses fois, extensible (il suffit par exemple de rajouter une entrée pour compiler du coffeescript et ajouter un peu de dynamisme dans les pages, etc.).

Aparté

'tain mais je sais pas comment il fait, c'est mega super lourd de placer autant de liens dans un post !

Aparté n°2

Oui, l'écriture de ce billet est probablement plus longue que l'écriture de la dite page oueb en html+css !

Partie 2

Il faut croire que l'épisode précédent vous a intéressé (mon petit doigt me dit qu'il est même passé sur un incubateur d'excellence aux dires des mytiloïdes qui s'y trouvent). Voici donc la suite, tant attendue.

Comment ça une suite ?

Ben vous croyez quoi ?! On fait de la page oueb monsieur ! C'est un sujet sérieux ! Pas question de s'arrêter avec juste un peu de Haml, Sass, Ruby, Rake et git. Cela suffirait à des développeurs inexpérimentés, pas pour des vrais bons comme nous !

Introduction

Et il va nous sortir quoi de son chapeau ce bon monsieur ? Le problème il était de faire une page internet^W oueb statique hein !

Que des choses indispensables pour briller en société ! En l’occurrence, l'utilisation de bundler et guard et, histoire d'aller un peu plus loin, un peu de coffeescript parce qu'on le mérite bien.

Bendleure

Comme vous avez pu le remarquer, la génération de votre page html nécessitait l'utilisation de plusieurs gem ruby en l'occurrence :

	haml

	sass

Il était donc nécessaire de réaliser deux actions manuelles pour les installer. Mais les commandes c'est surfait, tout le monde le sait !

Heureusement bundler est là pour nous ! Tout d'abord, étant donné que c'est également une gem, il faut l'installer :

gem install bundler

Ha oui, je vous vois venir !

Oué mais l'autre il nous dit qu'on va supprimer l'installation manuelle des gem et il ne trouve rien de mieux à faire que d'installer une nouvelle gem !

Et là de répondre :

C'est pas faux

D'ailleurs, vous allez même créer un nouveau fichier, Gemfile qui contiendra le code suivant :

source 'https://rubygems.org'

gem 'haml'
gem 'sass'

Vous pouvez désormais installer ces deux gem via la commande :

bundle

C'est 'achement plus facile, non ?

Cette commande va vous installer les deux gem si vous ne les aviez pas déjà et va créer un fichier Gemfile.lock qui contient les installations réalisées et leur version. Si un tel fichier n'existe pas, bundler va essayer de récupérer la dernière version des gem. Si un fichier lock existe déjà, il va essayer d'installer la version spécifiée dans le fichier. L'avantage est que, si vous partagez ce fichier entre vos différents environnements (par exemple en le versionnant dans votre git), il vous assure d'avoir les mêmes dépendances partout. Et ça c'est bien !

Développer votre page statique est donc d'autant plus aisé qu'il vous suffit de faire un clone de votre git et d'exécuter bundler (de toute façon, qui n'a pas bundler sur sa machine aujourd'hui ?).

Moins j'en fait, mieux je me porte !

Étant donné que vous êtes une vraie feignasse, vous n'avez surtout pas envie de devoir relancer rake à chaque modification réalisée (car le temps gagné pourra être passé à moulerW faire sa veille technologique).

La première chose est donc d'ajouter guard à votre Gemfile (vous voyez que finalement ça sert à quelque chose bundler) et l'installer via bundle.

gem 'guard'

La deuxième chose est d'initialiser guard. Une bonne pratique est de toujours utiliser bundler pour exécuter guard. Vous n'allez donc pas exécuter guard init mais :

bundle exec guard init

Ceci va vous créer un fichier Guardfile qui va bien (mais qui ne fait rien).

Je vous conseille d'aller voir la documentation de guard car un certain nombre d'usages classiques sont déjà pris en charge et leur mise en œuvre est vraiment simple.

Dans notre cas, on utilise rake pour construire notre page statique. Tout naturellement, nous allons donc nous tourner vers le greffon guard-rake.

Dans le Gemfile rajouter :

gem 'guard-rake'

et exécuter bundle.

Ensuite, initialiser le Guardfile avec guard-rake :

bundle exec guard init rake

Vous devez donc avoir un fichier Guardfile qui contient :

guard 'rake', :task => 'build' do
 watch(%r{^my_file.rb})
end

J'espère que vous avez déjà compris ce que ça voulait dire : lorsque le/les fichiers surveillés par watch seront modifiés, rake sera exécuté avec la cible build. Parfait, c'est exactement ce qu'on cherche à faire !

Il ne reste donc plus qu'à modifier un peu le watch pour que ça corresponde à notre cas :

guard 'rake', :task => 'build' do
 watch %r{^index.haml$}
 watch %r{^css/(.+)\.sass$}
end

De cette manière, dès que index.haml ou l'un des fichiers sass va être modifié, rake va être exécuté.

Faisons un petit test. Tout d'abord il convient de lancer guard :

bundle exec guard

Et voilà !

À chaque fois que vous modifierez un des fichiers surveillés, la sortie sera régénérée ! Le gain en terme de confort est loin d'être négligeable, c'est vraiment un plus pour développer correctement une page oueb statique !

L'inter a ctivité

Comme on n'est pas des mickeys, on va faire les choses en grand : on va rajouter un peu d'interactivité et de fun dans cette page tristounette !

Pour ce faire, on va rajouter un peu de code côté client. Mais bon, tout le monde le sait, le javascript c'est has been. On va donc le faire en coffeescript !

Tout d'abord, créer un répertoire js (oui, js, pas coffee) et dedans un fichier mickey.coffee.

Dans ce fichier, écrire le contenu suivant :

init = ->
 img = document.createElement 'img'
 img.src = ""
 img.style.position = 'absolute'
 img.style.top = '-1000px'
 img.style.left = '-1000px'
 document.body.appendChild img

 window.onmousemove = (e) ->
 img.style.left = "#{e.clientX + 10}px"
 img.style.top = "#{e.clientY + 10}px"

init()

Bon, c'est bien joli mais comment on l'intègre ?

Déjà, on va rajouter la gem qui va bien à bundler :

gem 'coffee-script'

Puis l'installer :

bundle

Ensuite, il faut compiler le tout en javascript. Dans le fichier Rakefile ajouter en tête :

require 'coffee-script'

Et ajouter à la tâche :build :

js = CoffeeScript.compile File.read("js/mickey.coffee")
File.open("_site/mickey.js", "w") { |f| f.write(js) }

Enfin, appeler le script dans la page web. Pour ce faire, ajouter une balise script pointant vers mickey.js à la fin du fichier :

%script(src="mickey.js")

Il reste une dernière petite chose à faire, l'ajouter au Guardfile :

watch %r{^js/mickey\.coffee$}

Désormais c'est fait ! Vous avez donc une super animation de haute voltige sur votre page web statique !

Conclusion

It's time to kick ass and chew bubble gum, and I'm all outta gum !

Et voilà, tout roule. Vous avez enfin une page web statique de très haut niveau. À ce stade vous pouvez travailler parmi les meilleurs et vous avez désormais une justification pour le prix de vos œuvres d'art.

Autre conclusion

Et sinon, ben vous aurez juste eu l'occasion de découvrir certaines technologies plutôt cool au travers d'une réalisation totalement inutile ;)

Les sources utilisées sont disponibles sur un dépôt github et le résultat tant attendu est visible

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars701017000avatar.jpg
S
SSat
A,

P,
H

