

Journal Veuillez instancier ce journal avant de le lire

Posté par devnewton 🍺 (site web personnel) le 09 octobre 2014 à 17:47.
Licence CC By‑SA.

Étiquettes :

	c++

	performance

	java

	template

	benchmark

	kiss

	jeu

[image:]

/* attention ce journal est très légèrement technique, il ne suit pas la ligne éditoriale de linuxfr, vous n'y trouverez donc ni recette de cuisine, ni histoire de motards */

class journal < typename… Users > {

Bonjour Nal!

Si tu as lu mon précédent journal, tu sais que je me remets à jour en C++ en écrivant un petit prototype de jeu afin d'explorer ou de redécouvrir certaines parties de l'univers de cette plateforme de développement en kit.

Cette semaine, je me suis intéressé aux variadic templates (patrons en nombre variable en français?) et au policy based design (dessein basé sur la police?) pour implémenter un petit entity system (système à entités ça c'est facile!): bourrines.

Si ce bourrin entity system n'a pas pour but de faire de la concurrence à des bibliothèques plus sérieuses, il s'inspire fortement de la référence java dans le domaine, artemis tout en usant de la possibilité qu'offre C++ de bien gérer la mémoire.

Pour ceux qui ont raté les journaux de rewind<, un entity system est une architecture très à la mode dans les jeux vidéos: il s'agit d'une variante du role pattern combiné avec des principes du data oriented programming. Pour simplifier et éviter de massacrer la langue de Jacques Toubon, un système à entité dans un jeu peu se résumer à:

	presque tout élément du jeu (décors, avatars, pnjs, objets, bonus, tirs, plateformes…) est une entité.

	une entité peut se voir attribuer ou retirer des composants.

	un composant est un ensemble de données simples (PDO ie plain data object).

	le moteur du jeu est constitués de systèmes.

	un système est un ensemble d'algorithmes qui peuvent créer et détruire des entités ainsi que lire, écrire et transformer leurs composants.

Dans ma version de cette architecture, j'ai fait en sorte:

	de pouvoir changer facilement de layout mémoire pour les entités et les composants via des stores: c'est l'application du policy based design.

	de générer ces layouts à la compilation sans avoir à écrire de code intrusif dans les composants: c'est là qu'intervient l'usage des variadic templates, par exemple au lieu de créer une struct à la main avec un champ par composant, j'ai fait une classe component_struct qui hérite récursivement d'elle même en ajoutant un champ correspondant à un template de sa liste.

Si tu es un peu perdu, le mieux est regarder le benchmark que j'ai écrit pour comparer les performances des deux layouts en mémoire:

	je crée, fait rebondir et détruis un grand nombre de sprites sur l'écran.

	chaque sprite est une entité.

	chaque entité a des composants pour la position, l'image à afficher, sa durée de vie…

	un hera_system donne la vie aux sprites.

	un hades_system les tue au bout d'un moment.

	un hades_system les tue au bout d'un moment.

	un move_system les déplacent.

	un render_system les affiche.

Chez moi, le layout array of struct est environ 2% plus rapide, mais je n'ai pas encore creusé et profilé le sujet pour savoir où sont vraiment les goulots d'étranglements.

Sources

};

class journal< U, Users… > : public journal< Users… > {

Bonjour à toi aussi U! Que penses-tu de mon code? Comment ferais-tu pour l'améliorer?

};

[image: benchmark]

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/af07b78fa4329f9fc95a1e82227a8e8806fe68c5cf6c0719016e6354.jpg
SR
A A
i
e

A

A

et
?41‘""%‘:'. i
e s

e
an
4 }F" e f
A
e

EPUB/avatars136054000avatar.png

