

Journal De la façon dont un problème de boot est résolu sous FreeBSD

Posté par Joris Dedieu (site web personnel) le 27 juillet 2012 à 17:44.
Licence CC By‑SA.

Étiquettes :

	franglais

[image:]

Sommaire

	
Lancer init

	
/etc/rc
	
Gestion des dépendances

	
L'affreux spanning tree

	
Conclusion

En ces temps troublés par l'arrivée de systemd dans ArchLinux et les histoires de SecureBoot et de grub2 je trouve intéressant de faire un petit journal pour raconter un peu ce qui se passe ailleurs.

Lancer init

FreeBSD par défaut utilise son propre boot loader appelé boot. Il se décompose en trois phases boot0, boot1 et boot2. Ces programmes n'ont rien de folichon, sinon qu'ils permettent éventuellement de choisir un disque et un noyau pour booter. Ils finissent normalement par lancer un programme un peut plus évolué (loader) qui présente un menu avec différentes options de maintenance (single user …) et un petit shell avec quelques commandes essentielles : charger décharger un noyau et des modules, lister des fichiers et des périphériques, placer des variables d'environnement.

loader, comme son nom l'indique fini par charger un noyau et l’exécuter. Lorsqu'il a terminé de se lancer, ce dernier passe la main à init qui exécute le script /etc/rc.

/etc/rc

Ce script commence par sourcer quelques fichiers afin d'avoir ses fonctions et sa configuration puis lance rcorder pour déterminer l'ordre d’exécution des scripts. On peut connaitre cet ordre en utilisant la commande

rcorder /etc/rc.d/*

On constate alors plusieurs choses.

Déterminer si un script doit être exécuté ou pas

Tous les scripts présent dans /etc/rc.d/ seront exécutés. C'est le script lui même qui détermine s'il doit faire quelque chose. Prenons l'exemple de ssh. Dans /etc/default/rc.conf on a :

sshd_enable="NO" # Enable sshd
sshd_program="/usr/sbin/sshd" # path to sshd, if you want a different one.
sshd_flags="" # Additional flags for sshd.

Dans /etc/rc.conf :

sshd_enable="YES"

Dans /etc/rc.d/sshd

...
name="sshd"
rcvar="sshd_enable"
...

load_rc_config $name
run_rc_command "$1"

load_rc_config source différents fichiers susceptible de contenir une directive déterminant si sshd doit être lancé ou pas. Ensuite run_rc_command appelle la fonction checkyesno qui évalue la valeur de rcvar

checkyesno()
{
 eval _value=\$${1}
 debug "checkyesno: $1 is set to $_value."
 case $_value in

 # "yes", "true", "on", or "1"
 [Yy][Ee][Ss]|[Tt][Rr][Uu][Ee]|[Oo][Nn]|1)
 return 0
 ;;

 # "no", "false", "off", or "0"
 [Nn][Oo]|[Ff][Aa][Ll][Ss][Ee]|[Oo][Ff][Ff]|0)
 return 1
 ;;
 *)
 warn "\$${1} is not set properly - see ${rcvar_manpage}."
 return 1
 ;;
 esac
}

Dans notre cas ssh sera lancé mais ce n'est pas le cas dans une installation par défaut.

Gestion des dépendances

Il existe quelques pseudo scripts marquant des étapes importantes du démarrage. Dans l'ordre :

...
/etc/rc.d/FILESYSTEMS
...
/etc/rc.d/NETWORKING
...
/etc/rc.d/SERVERS
...
/etc/rc.d/DAEMON
...
/etc/rc.d/LOGIN

Ceux-ci permettent de déterminer à quel moment du boot nous en sommes et de gérer les dépendances. Si on reprend le cas de sshd.

Dans /etc/rc.d/sshd on a :

PROVIDE: sshd
REQUIRE: LOGIN cleanvar
KEYWORD: shutdown

On sait donc que le script sshd doit être exécuté après le script cleanvar et le pseudo script LOGIN.

cat /etc/rc.d/LOGIN
#!/bin/sh
#
$FreeBSD: src/etc/rc.d/LOGIN,v 1.6.2.1.8.1 2012/03/03 06:15:13 kensmith Exp $
#

PROVIDE: LOGIN
REQUIRE: DAEMON

This is a dummy dependency to ensure user services such as xdm,
inetd, cron and kerberos are started after everything else, in case
the administrator has increased the system security level and
wants to delay user logins until the system is (almost) fully
operational.

On sait aussi que chaque script déclarant REQUIRE: sshd doit être exécuté après celui-ci. Enfin KEYWORD: shutdown permet de déterminer qu'il sera nécessaire d’exécuter ce script lors de l’arrêt du système :

/etc/rc.d/sshd stop

Voila donc à peu près comment les choses se passent. Après /etc/rc.d, rc`` passe à/usr/local/etc/rc.dpuis à/etc/rc.local``` et le système a démarré.

L'affreux spanning tree

Spanning tree est un protocole bien sympa mais il pose au moins un problème. Suivant la configuration, le réseau peut être relativement lent à monter. L'interface et up mais le serveur reste inaccessible durant quelques secondes. Cela n'est pas très grave en soit si ce n'est que ntpd à besoin de pouvoir résoudre le nom des serveurs de temps pour démarrer. Sinon, il ne fait rien, il ne met pas le serveur à l'heure …

Pour résoudre se problème (et d'autres) un petit script de rc a été introduit :

#!/bin/sh

$FreeBSD: src/etc/rc.d/netwait,v 1.2.2.3.2.1 2012/03/03 06:15:13 kensmith Exp $
#
PROVIDE: netwait
REQUIRE: NETWORKING
KEYWORD: nojail
#
The netwait script is intended to be used by systems which have
statically-configured IP addresses in rc.conf(5). If your system
uses DHCP, you should use synchronous_dhclient="YES" in your
/etc/rc.conf instead of using netwait.

. /etc/rc.subr

name="netwait"
rcvar="netwait_enable"

start_cmd="${name}_start"
stop_cmd=":"

netwait_start()
{
 local ip rc count output link

 if [-z "${netwait_ip}"]; then
 err 1 "You must define one or more IP addresses in netwait_ip"
 fi

 if [${netwait_timeout} -lt 1]; then
 err 1 "netwait_timeout must be >= 1"
 fi

 # Handle SIGINT (Ctrl-C); force abort of while() loop
 trap break SIGINT

 if [-n "${netwait_if}"]; then
 echo -n "Waiting for $netwait_if to have link"

 count=1
 while [${count} -le ${netwait_if_timeout}]; do
 if output=`/sbin/ifconfig ${netwait_if} 2>/dev/null`; then
 link=`expr "${output}" : '.*[:blank](http://fr.wikipedia.org/wiki/:blank: "Définition Wikipédia")status: \(no carrier\)'`
 if [-z "${link}"]; then
 echo '.'
 break
 fi
 else
 echo ''
 err 1 "ifconfig ${netwait_if} failed"
 fi
 sleep 1
 count=$((count+1))
 done
 if [-n "${link}"]; then
 # Restore default SIGINT handler
 trap - SIGINT

 echo ''
 warn "Interface still has no link. Continuing with startup, but"
 warn "be aware you may not have a fully functional networking"
 warn "layer at this point."
 return
 fi
 fi

 # Handle SIGINT (Ctrl-C); force abort of while() loop
 trap break SIGINT

 for ip in ${netwait_ip}; do
 echo -n "Waiting for ${ip} to respond to ICMP"

 count=1
 while [${count} -le ${netwait_timeout}]; do
 /sbin/ping -t 1 -c 1 -o ${ip} >/dev/null 2>&1
 rc=$?

 if [$rc -eq 0]; then
 # Restore default SIGINT handler
 trap - SIGINT

 echo '.'
 return
 fi
 count=$((count+1))
 done
 echo ': No response from host.'
 done

 # Restore default SIGINT handler
 trap - SIGINT

 warn "Exhausted IP list. Continuing with startup, but be aware you may"
 warn "not have a fully functional networking layer at this point."
}

load_rc_config $name
run_rc_command "$1"

Du coup, si on ne souhaite pas que la machine continue son démarrage avant d'avoir réellement du réseau, il suffit donc de rajouter :

netwait_enable="YES"
netwait_ip="XXX.XXX.XXX.XXX"

dans /etc/rc.conf

Conclusion

Aucune. C'était gratuit. Pour peut-être éclairer un peu le débat.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars584015000avatar.jpeg

