

Journal et ce qui devait arriver, arriva ...

Posté par Joris Dedieu (site web personnel) le 08 novembre 2012 à 01:58.

Étiquettes :

	systemd

	haproxy

	opisidiot

[image:]

Tout commence ici : http://marc.info/?l=haproxy&m=135229333418960&w=2

Le gars explique qu'on peut pas faire marcher correctement haproxy avec systemd pour une obscure raison de mise en état "failed" du service en cas de rechargement de la config.

I'm trying to use haproxy with systemd.
It cannot be done with a raw haproxy for now, because when "reloading" the configuration file
with haproxy -sf <pid>, the former process gets killed, so the service enters a "failed" state
and thus kills all its children, resulting in no haproxy running.
In order not to have to make a lot of modifications in the way haproxy currently handles this,
I'm writing a wrapper around it and the corresponding systemd service file. I will provide them
once they are fully ready. (What could be the name of this wrapper, by the way? haproxy-systemd-wrapper?)
This requires a small modification to the haproxy entry point though: In order to be able to track
haproxy state from the wrapper with the double fork' the entry point must not exit after spawning
child processes.
Here is the first patch which introduces this feature.

En suite, on a : http://marc.info/?l=haproxy&m=135229333518962&w=2

diff --git a/src/haproxy.c b/src/haproxy.c
index c6933c3..b7430f8 100644
--- a/src/haproxy.c
+++ b/src/haproxy.c
@@ -42,6 +42,7 @@
 #include <signal.h>
 #include <stdarg.h>
 #include <sys/resource.h>
+#include <sys/wait.h>
 #include <time.h>
 #include <syslog.h>

@@ -509,8 +510,11 @@ void init(int argc, char **argv)
 arg_mode |= MODE_DEBUG;
 else if (*flag == 'c')
 arg_mode |= MODE_CHECK;
- else if (*flag == 'D')
+ else if (*flag == 'D') {
 arg_mode |= MODE_DAEMON;
+ if (flag[1] == 's') /* -Ds */
+ arg_mode |= MODE_SYSTEMD;
+ }
 else if (*flag == 'q')
 arg_mode |= MODE_QUIET;
 else if (*flag == 's' && (flag[1] == 'f' || flag[1] == 't')) {
@@ -564,7 +568,7 @@ void init(int argc, char **argv)
 }

 global.mode = MODE_STARTING | /* during startup, we want most of the alerts */
- (arg_mode & (MODE_DAEMON | MODE_FOREGROUND | MODE_VERBOSE
+ (arg_mode & (MODE_DAEMON | MODE_SYSTEMD | MODE_FOREGROUND | MODE_VERBOSE
 | MODE_QUIET | MODE_CHECK | MODE_DEBUG));

 if (LIST_ISEMPTY(&cfg_cfgfiles))
@@ -715,24 +719,24 @@ void init(int argc, char **argv)

 if (arg_mode & (MODE_DEBUG | MODE_FOREGROUND)) {
 /* command line debug mode inhibits configuration mode */
- global.mode &= ~(MODE_DAEMON | MODE_QUIET);
+ global.mode &= ~(MODE_DAEMON | MODE_SYSTEMD | MODE_QUIET);
 global.mode |= (arg_mode & (MODE_DEBUG | MODE_FOREGROUND));
 }

- if (arg_mode & MODE_DAEMON) {
+ if (arg_mode & (MODE_DAEMON | MODE_SYSTEMD)) {
 /* command line daemon mode inhibits foreground and debug modes mode */
 global.mode &= ~(MODE_DEBUG | MODE_FOREGROUND);
- global.mode |= (arg_mode & MODE_DAEMON);
+ global.mode |= (arg_mode & (MODE_DAEMON | MODE_SYSTEMD));
 }

 global.mode |= (arg_mode & (MODE_QUIET | MODE_VERBOSE));

- if ((global.mode & MODE_DEBUG) && (global.mode & (MODE_DAEMON | MODE_QUIET))) {
- Warning("<debug> mode incompatible with <quiet> and <daemon>. Keeping <debug> only.\n");
- global.mode &= ~(MODE_DAEMON | MODE_QUIET);
+ if ((global.mode & MODE_DEBUG) && (global.mode & (MODE_DAEMON | MODE_SYSTEMD | MODE_QUIET))) {
+ Warning("<debug> mode incompatible with <quiet>, <daemon> and <systemd>. Keeping <debug> only.\n");
+ global.mode &= ~(MODE_DAEMON | MODE_SYSTEMD | MODE_QUIET);
 }

- if ((global.nbproc > 1) && !(global.mode & MODE_DAEMON)) {
+ if ((global.nbproc > 1) && !(global.mode & (MODE_DAEMON | MODE_SYSTEMD))) {
 if (!(global.mode & (MODE_FOREGROUND | MODE_DEBUG)))
 Warning("<nbproc> is only meaningful in daemon mode. Setting limit to 1 process.\n");
 global.nbproc = 1;
@@ -1341,7 +1345,7 @@ int main(int argc, char **argv)
 }

 /* open log & pid files before the chroot */
- if (global.mode & MODE_DAEMON && global.pidfile != NULL) {
+ if (global.mode & (MODE_DAEMON | MODE_SYSTEMD) && global.pidfile != NULL) {
 unlink(global.pidfile);
 pidfd = open(global.pidfile, O_CREAT | O_WRONLY | O_TRUNC, 0644);
 if (pidfd < 0) {
@@ -1423,7 +1427,7 @@ int main(int argc, char **argv)
 argv[0], (int)limit.rlim_cur, global.maxconn, global.maxsock, global.maxsock);
 }

- if (global.mode & MODE_DAEMON) {
+ if (global.mode & (MODE_DAEMON | MODE_SYSTEMD)) {
 struct proxy *px;
 int ret = 0;
 int proc;
@@ -1466,8 +1470,11 @@ int main(int argc, char **argv)
 px = px->next;
 }

- if (proc == global.nbproc)
+ if (proc == global.nbproc) {
+ if (global.mode & MODE_SYSTEMD)
+ waitpid(ret, NULL, 0);
 exit(0); /* parent must leave */
+ }

 /* if we're NOT in QUIET mode, we should now close the 3 first FDs to ensure
 * that we can detach from the TTY. We MUST NOT do it in other cases since

C'est simplement tout pourris …

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars584015000avatar.jpeg

