

Journal Code natif et Node.js - parser et préprocesseur XML

Posté par Claude SIMON (site web personnel) le 01 septembre 2017 à 16:31.
Licence CC By‑SA.

Étiquettes :

	xpp

	xppq

	xml

	parser

	préprocesseur

	c++

	nodejs

[image:]

Histoire de diversifier mon activité, et aussi parce que j'aime bien me lancer des défis, j'ai décidé de me mettre à Node.js. Cependant, compte tenu de ma faible appétence pour Javascript, lui préférant de loin C++, j'ai bien entendu cherché un moyen de coder pour Node.js avec mon langage fétiche. Et c'est tout à fait possible, grâce aux addons. Bon, ce n'était pas vraiment une surprise, n'ayant jusqu'à présent jamais rencontré d'environnement d'exécution logiciel qui ne puisse s'interfacer, à minima, avec du C.

Me voici donc en train de coder mon premier addon pour Node.js, et de découvrir en passant les joies de la programmation asynchrone. Ce faisant, je me suis, comme à mon habitude, crée quelques bibliothèques pour me faciliter le développement des prochains addons, et j'avais acquis suffisamment d'aisance dans le domaine pour proposer avec sérénité cette nouvelle compétence à mes clients .

Néanmoins, une chose me chagrinait. Par rapport à mon environnement de développement C++ usuel, celui nécessité pour le développement d'un addon faisait un peu usine à gaz. Entre les fichiers package.json et binding.gyp, la commande node(-pre)-gyp pour générer les fichiers automatisant la génération de l'addon proprement dit, les dépendances aux différentes bibliothèques (node, v8, libuv…), je ne pouvais plus utiliser les outils que j'avais amoureusement développés pour me faciliter la gestion mes projets C++.

J'ai donc décidé de développer un addon universel qui aurait pour rôle d'officier comme wrapper pour des bibliothèques dynamiques qui contiendraient le véritable code des mes différents addons. Ces bibliothèques seront totalement indépendants de Node.js, le wrapper, commun à toutes ces bibliothèques, se chargeant de faire le lien entre ces bibliothèques et Node.js.

Pour me faire la main, j'ai développé un addon Node.js proposant un parser et un préprocesseur XML. Je l'ai placé sur npm, où vous le trouverez à l'adresse http://www.npmjs.com/package/xppq. Comme tout paquet présent sur npm, vous pouvez l'installer en lançant npm install xppq. N'hésitez pas, tout ce petit monde est publié sous licence libre, et il y en a pour tout les goûts : GNU/Linux et autres systèmes POSIX, dont macOS, ainsi que Windows, que ce soit sur plateforme x86 ou ARM. Oui, ça peut même être installé sur Raspberry Pi et consorts…

À noter que, excepté pour Windows, l'installation de cet addon nécessite un environnement de développement C++. Ben oui, c'est quand même du natif !

Une fois installé, vous pouvez le tester en lançant npm explore xppq -- node test.js. Vous obtiendrez le résultat du parsage (?) d'un fichier XML de démonstration après passage par le préprocesseur, à savoir :

Start tag: 'SomeTag'
 Attribute: 'AnAttribute' = 'SomeAttributeValue'
 Start tag: 'SomeOtherTag'
 Attribute: 'AnotherAttribute' = 'AnotherAttributeValue'
 Value: 'TagValue'
 End tag: 'SomeOtherTag'
 Start tag: 'YetAnotherTag'
 Attribute: 'YetAnotherAttribute' = 'YetAnotherAttributeValue'
 Value: 'Some macro content !'
 End tag: 'YetAnotherTag'
End tag: 'SomeTag'

En lançant npm explore xppq -- node test.js 0 (notez le 0 à la fin), le contenu du fichier de démonstration s'affichera, à savoir :

<?xml version="1.0" encoding="UTF-8"?>
<SomeTag xmlns:xpp="http://q37.info/ns/xpp/" AnAttribute="SomeAttributeValue">
 <SomeOtherTag AnotherAttribute="AnotherAttributeValue">TagValue</SomeOtherTag>
 <xpp:define name="SomeMacro">
 <xpp:bloc>Some macro content !</xpp:bloc>
 </xpp:define>
 <YetAnotherTag YetAnotherAttribute="YetAnotherAttributeValue">
 <xpp:expand select="SomeMacro"/>
 </YetAnotherTag>
</SomeTag>

En remplaçant le 0 par un chiffre entre 1 et 4, différents tests seront lancés, comme le piping du préprocesseur, ou l'application d'un callback sur la sortie du préprocesseur, le préprocesseur étant en fait implémenté sous forme de stream Node.js.

Voici encore un aperçu du contenu du fichier XPPq.js, qui charge le wrapper, lui-même chargeant la bibliothèques dynamique contenant le parser et le préprocesseur, avec l’encapsulation permettant d'y accéder à partir de Javascript :

"use strict"

var affix = "xppq";

var njsq = null;
var componentPath = null;
var componentFilename = null;
var path = require("path");

njsq = require('njsq');
componentPath = __dirname;

componentFilename = path.join(componentPath, affix + "njs").replace(/\\/g, "\\\\").replace(/'/g, "\\'").replace(/ /g, "\\ ");
njsq.register(componentFilename);
module.exports = njsq;

module.exports.returnArgument = (text) => { return njsq._wrapper(0, text) };

const stream = require('stream');

class Stream extends stream.Readable {
 constructor(stream, options) {
 super(options);
 stream.on('readable', () => { var chunk = stream.read(); if (chunk == null) njsq._wrapper(5, stream); else njsq._wrapper(4, stream, chunk); });
 njsq._wrapper(7, stream, this);
 }
 _read(size) {
 njsq._wrapper(6, this);
 }
}

// If modified, modify also 'parser.cpp'.
var tokens = {
 ERROR: 0,
 START_TAG: 1,
 ATTRIBUTE: 2,
 VALUE: 3,
 END_TAG: 4
};

module.exports = njsq;
module.exports.Stream = Stream;
module.exports.parse = (stream, callback) => { stream.on('readable', () => { var chunk = stream.read(); if (chunk == null) njsq._wrapper(2, stream); else njsq._wrapper(1, stream, chunk); }); njsq._wrapper(3, stream, callback) };
module.exports.tokens = tokens;

Et encore le fichier test.js, qui montre des exemples de mise en œuvre du parser et du préprocesseur :

"use strict"

const fs = require('fs');
const stream = require('stream');
const xppq = require('./XPPq.js');
var indentLevel = 0;

function write(text) {
 process.stdout.write(text);
}

function indent(level) {
 while (level--)
 write(' ');
}

function callback(token, tag, attribute, value) {
 switch (token) {
 case xppq.tokens.ERROR:
 write(">>> ERROR: '" + value + "'\n");
 break;
 case xppq.tokens.START_TAG:
 indent(indentLevel);
 write("Start tag: '" + tag + "'\n");
 indentLevel++;
 break;
 case xppq.tokens.ATTRIBUTE:
 indent(indentLevel);
 write("Attribute: '" + attribute + "' = '" + value + "'\n");
 break;
 case xppq.tokens.VALUE:
 indent(indentLevel);
 write("Value: '" + value.trim() + "'\n");
 break;
 case xppq.tokens.END_TAG:
 indentLevel--;
 indent(indentLevel);
 write("End tag: '" + tag + "'\n");
 break;
 default:
 throw ("Unknown token !!!");
 break;
 }
}

const file = __dirname + '/demo.xml';
var test = 4; // Default test id.
var arg = process.argv[2];

if (arg != undefined)
 test = Number(arg);

console.log(xppq.componentInfo());
console.log(xppq.wrapperInfo());
console.log(xppq.returnArgument('Basic test : this text comes from the addon (native code), and is written from Javascript.'));
console.log(' ---------------');

switch (test) {
 case 0:
 console.log("No treatment ; to see the original file.\n");
 fs.createReadStream(file).pipe(process.stdout);
 break;
 case 1:
 console.log("Piping the preprocessing stream.\n");
 new xppq.Stream(fs.createReadStream(file)).on('error', (err) => console.error('\n>>> ERROR : ' + err + '\n')).pipe(process.stdout);
 break;
 case 2:
 console.log("Using the preprocessing stream with a callback, which transforms to lower case.\n");
 new xppq.Stream(fs.createReadStream(file)).on('data', (chunk) => write(chunk.toString().toLowerCase())).on('error', (err) => console.error('\n>>> ERROR : ' + err + '\n'));
 break;
 case 3:
 console.log("XML parsing WITHOUT preprocessing.\n");
 xppq.parse(fs.createReadStream(file), callback);
 break;
 case 4:
 console.log("XML parsing WITH preprocessing.\n");
 xppq.parse(new xppq.Stream(fs.createReadStream(file)).on('error', (err) => console.error('>>> ERROR : ' + err)), callback);
 break;
 default:
 console.error("'" + arg + "' is not a valid test id ; must be '0' to '4'.");
 break;
}

Compte tenu de la nature Libre de Node.js, ainsi que du paquet npm présenté ici, celui-ci intéressera peut-être quelques développeurs Node.js de passage. Par ailleurs, je suis preneur de tous commentaires concernant ce paquet, notamment touchant à sa conformité aux règles de l'art (à part le fait qu'il soit codé en C++ au lieu de Javascript, évidemment).

Pour terminer, le traditionnel badge npm du paquet, donnant accès à toutes les informations le concernant :

[image: NPM]

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars890011000avatar.png

