

Journal media-toc ou un prétexte pour prendre des technologies en main

Posté par fengalin (site web personnel) le 16 octobre 2017 à 15:23.
Licence CC By‑SA.

Étiquettes :

	cairo

	matroska

	multimedia

	rust

	gstreamer

	gtk+3

[image:]

Sommaire

	La génèse

	Ma vie

	Le retour

	
Variation sur le même thème
	GStreamer, GLib & co.

	Comment ça marche pour Rust ?

	Adopté !

	Et Rust sinon ?

	
C'est pas un peu fini ?!
	Reste à faire

	Et après ?

Nal,

Cela fait quelques temps que je pense à te parler de mon projet media-toc, une application écrite en Rust qui vise à définir une table des matières pour un fichier audio-vidéo ou à scinder un fichier audio-vidéo en chapitres.

Tu me diras que le nom fait pitié, surtout en Français, et tu auras raison.

[image: IMH de media-toc : fichier vidéo]

IHM de media-toc : fichier vidéo.

La génèse

Tout a commencé il y a 5 ans avec la captation audio-vidéo d'un concert. Je voulais en extraire le flux audio et le découper en pistes, une piste par chanson. L'extraction du flux audio ne posait aucun souci : un bon vieux terminal, FFmpeg et le tour était joué. Cependant, le fichier obtenu dépassait le Go(*), trop lourd pour être découpé par Audacity qui cherchait à tout charger en RAM et ramait avant de s'effondrer sous le poids des Go. J'ai aussi sorti l'Ardourie lourde, mais ce n'était pas probant. Ne me demande pas pourquoi : je ne m'en souviens plus et ce n'est pas le sujet ! Par ailleurs, que demander de plus qu'une idée de développement apparemment non couverte par des outils existants ?

Je lançai donc Glade pour ébaucher une IHM et jetai un œil du côté de Vala. Tu te demandes sûrement pourquoi ces technologies et je te dirai que ce n'est pas le sujet non plus. En deux mots tout de même : à l'époque, j'étais déjà sur un autre prototype un peu plus avancé en Python et GTK et j'aimais bien l'idée d'un langage « récent » qui produisait du code natif. (Si tu es allé voir quel était ce prototype, tu as sans doute été amusé/horrifié par l'hébergeur qui était encore populaire à l'époque. Aujourd'hui, le-dit prototype continue sa vie dans un espace plus à la mode).

Ma vie

À cette époque encore troublée par les conséquences de la crise des subprimes, la vie me mobilisait sur d'autres préoccupations. Tu auras compris que ce n'était pas vraiment dû aux subprimes, mais je ne suis pas là pour te raconter ma vie ici-bas, Nal.

Le retour

Récemment, des circonstances plus clémentes m'ont permis de consacrer plus de temps libre aux développements de mon choix. Rust me faisait de l'œil. Je décidai de lui répondre avec ce projet non assouvi.

Le timing était presque parfait : le binding Rust de GTK et celui de Cairo, bien que non encore stabilisés étaient déjà bien avancés et un binding pour FFmpeg paraissait déjà assez complet. Au bout de quelque temps, j'obtins un prototype capable de charger un fichier audio-vidéo et ses chapitres, d'afficher la première trame vidéo et de dessiner les premiers samples audio. Ce prototype fut aussi l'occasion d'ajouter la lecture et l'écriture des chapitres dans le binding FFmpeg.

[image: media-toc : prototype basé sur FFmpeg]

Ce prototype basé sur FFmpeg peut sembler très semblable à la version actuelle. Il n'en est rien : il était alors beaucoup plus proche d'une démo PauvrePoint™ puisqu'il ne permettait ni la lecture, ni la recherche dans le flux vidéo, ni le zoom sur la waveform.

Variation sur le même thème

C'est en me penchant sur les modifications à apporter pour gérer la lecture, la mise en pause et la recherche dans le flux audio que l'évidence m'apparut : il me fallait tester GStreamer. Je modifiai donc mon prototype pour intégrer la toute nouvelle version du binding de GStreamer pour Rust.

GStreamer, GLib & co.

Tout comme GTK, GStreamer repose sur GLib, une bibliothèque portable écrite en C qui inclut GObject, un système de typage objet introspectif, et des fonctions pour le développement de fondations logicielles : gestion de la mémoire, entrées/sorties, multithreading, signaux, structures de données, internationalisation… GLib facilite aussi la génération de bindings. C'était d'ailleurs grâce à GLib que j'utilisais déjà GTK3 en Python dans le cadre du projet dont je te parlais plus haut.

Comment ça marche pour Rust ?

Les développeurs de GLib & co. ont créé Gir, un outil permettant de générer un binding Rust idiomatique à partir d'un projet basé sur GLib. Prenons l'exemple du binding GStreamer :

	Une première moulinette utilise les métadonnées issues de l'introspection de GObject pour créer des équivalents Rust pour les constantes, énumérations, types et des interfaces pour les différentes fonctions de la bibliothèque (FFI - à une époque, on appelait ça un stub). Pour le cœur de GStreamer, cela donne ce fichier pas tout à fait pratique pour les êtres humains, mais ce n'est pas son but.

	Une deuxième moulinette permet de générer les implémentations Rust. Toujours pour le cœur de GStreamer, tout ceci est généré automatiquement. Quelques subtilités nécessitent encore des retouches à la main, mais même dans ce cas, la génération automatique apporte une base appréciable aux ajustements.

Ce n'est pas vraiment une surprise : les modèles de partage d'objets ou de transfert de responsabilité de gestion de la mémoire de GLib trouvent des équivalents directs en Rust.

Adopté !

Tout comme pour le binding FFmpeg, la gestion des chapitres n'était pas sur le haut de la pile du projet gstreamer-rs. En revanche, pour media-toc, c'était fondamental. Ma modeste contribution a été récompensée par des conseils avisés du développeur du binding Rust, qui est aussi l'un des développeurs principaux de GStreamer et une progression significative de la partie audio du binding.

Ajoute à cela une intégration sans effort de la vidéo dans mon IHM grâce au plugin GTK, je décidai de basculer définitivement la gestion multimédia de media-toc sur gstreamer-rs.

Et Rust sinon ?

Ça déchire, grave !

Bien sûr, chacun observe ses propres critères pour apprécier un langage de programmation et un langage de programmation correspond nécessairement à des cas d'utilisation spécifiques. Rom1v a déjà rédigé un journal sur sa prise en main de Rust, je ne m'étendrai pas sur le sujet.

J'apprécie les garde-fous de Rust à la compilation. Je ne sais pas pour toi Nal, mais après toutes ces années, je n'ai toujours pas la certitude que mon code C sera garanti sans failles de sécurité. Parfois je me demande aussi ce qu'aurait donné Rust sur des projets pour lesquels la mise au point a été assez laborieuse. Je me revois débugger des problèmes de multithreading en C++ sur un système cryptographique communiquant avec 6 cartes à puce en parallèle sur un équipement que je n'avais jamais vu et auquel je n'avais pas accès, tout ça à 3 000 km de distance. C'est peut-être aussi pour cela que j'apprécie les contraintes qui limitent les data-races et autres race-conditions. J'aurais bien passé quelques minutes de plus à me gratter la tête devant les messages du compilateur plutôt que ces quelques jours « intéressants ».

L'écosystème est très agréable à utiliser aussi. Je veux parler de cargo en particulier. Il gère les dépendances, lance la compilation, lance les tests unitaires, exécute le binaire, etc. et tout cela avec une facilité déconcertante.

C'est pas un peu fini ?!

Attends, j'avais aussi envie de te parler de mon mécanisme de double buffering, vite fait. Lorsque j'ai cliqué sur play pour tester mon rendu de waveform à 60fps, le défilement était saccadé ! Mazette ! Rust ne tenait donc pas ses promesses… Et puis ça a fait ch'boom là-dedans : il fallait séparer le rendu de l'affichage. Une excellente occasion de mettre les mains dans les primitives de synchronisation de Rust. Note aussi la possibilité d'utiliser des canaux, mais je ne peux pas parler de tous les recoins du projet.

Je voulais aussi que le mécanisme reste conforme à la séparation IHM / média que j'avais adoptée depuis le début. C'était le moment de sortir les traits, en gros l'équivalent des interfaces dans d'autres langages, le polymorphisme ou le dynamic dispatch. Le mécanisme de double buffering ne sait pas qu'il est utilisé pour un rendu de waveform, il sait juste qu'il devra invoquer les traits d'un extracteur de samples à la réception des nouveaux buffers du flux audio. En nimage, ça donne ça :

[image: Diagramme de classes du mécanisme de _double buffering_]

Diagramme de classes du mécanisme de double buffering. Il est parfois nécessaire de forcer le rafraîchissement depuis l'IHM, d'où la méthode refresh qui peut être invoquée par l'IHM.

D'ailleurs, on me suggère une représentation spectrale, une nouvelle implémentation de l'extracteur de samples en somme.

Bon en réalité, j'ai encore quelques soucis de fluidité, mais au moins ça ne vient plus du temps passé au rendu de la waveform.

Sinon, pour répondre à ta question, le projet n'est pas fini…

Reste à faire

À ce jour, media-toc sait ouvrir un média (audio ou audio-vidéo), afficher quelques informations dont les chapitres et l'image de couverture, démarrer la lecture, mettre le flux en pause, naviguer dans le flux, représenter les différents canaux audios, zoomer sur l'axe temporel à la précision du sample audio.

[image: media-toc : _waveforms_ pour 5.1 canaux audios]
Waveforms pour 5.1 canaux audios.

Il me reste à implémenter l'édition des chapitres et l'export à proprement parler et bien sûr les 80% de finissions.

Et après ?

Quand l'application sera fonctionnelle, j'envisage d'extraire le mécanisme de double buffering et les rendu / interaction avec la waveform, voire la représentation spectrale, vers un plugin GStreamer.

Et puis, j'ai d'autres idées rustiennes pour la suite, j'espère t'en parler une prochaine fois.

(*) 2h10 en PCM stéréo

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/c2f4f9d8fd63a3fd3c08c04d6082f6a1363d9101c7e9bff01f2e53ed.png
GSt reamer]

push_samples

SampleExtractor DoubleAudioBuffer
rextract_samples() exposed +push samples ()
+refresn() L <ferefresn()
~ +get_exposed()

'

s get_exposed refresh
WaveformBuffer

Ut

rextract_samples()
+refresn()
+render ()
+get_tmage()

EPUB/98e59f034557a075e04768bd86bba3260901295ea59a01daf821fb98.png
P Media Tble Of Contents

Te Sample
st Emest
Description Mtroska / WebM
Duration 00:00:08.000

Titte st End
1 panl 06:00:00.000 00:00:01.000
Part2 060001000 00:00:02.000

0 “ o

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/b2e89565f0030384ab357c358b3973741f9b7f9339e961525dc7a7cf.png
47:43.575.515

47:43.599

47:43.551

EPUB/32827724e6b8e7f0f27573a298bce62fda9f6486d47cde7553f48e29.png
H - media-toc m - x

DSC_093Lmkv
Title: Sample
Artist: Ernest
Container: Matroska
Video Codec: H.264 (Main Profile)
Audio Codec: Opus
Duration: 00:08.408
Title Start End
Part1 00:00.000 00:01.000
Part2 00:01.000 00:02.000
Part3 00:02.000 00:08.408

00:01.126.050

00:00.523

Part 1 | Part 2 Part 2 | Part 3

"o -+

EPUB/avatars794077000avatar.jpg

