

Journal Mes outils Python en 2020

Posté par flan (site web personnel) le 18 août 2020 à 21:03.
Licence CC By‑SA.

Étiquettes :

	python3

[image:]

Que ce soit à titre professionnel ou personnel, je fais pas mal de Python, en utilisant toujours le même EDI (PyCharm Pro).

Comme j'ai fait quelques recherches sur les outils de packaging, je me suis dit que j'allais partager le résultat (sachant que le but est uniquement de répondre à mes besoins, pas aux vôtres que je ne connais pas).

Pour me faciliter la vie, j'utilise un certain nombre d'outils classiques : flake8, mypy, black, isort, tox, git, travis-ci. Je souhaite également que les outils soient correctement intégrés dans PyCharm.

Ces outils peuvent généralement être configurés par des fichiers de conf', qu'on trouvera généralement à la racine.

Il ne reste plus qu'à s'occuper des dépendances et du packaging… et là, c'est un peu le drame.

Python ne manque pas d'outils de packaging et d'installation, c'est le moins qu'on puisse dire.

Globalement, il reste actuellement quatre outils dont les usages se croisent très largement :

	l'antique fichier setup.py, qui peut être simplifié grace à un fichier de configuration setup.cfg et qui demande également un MANIFEST.in,

	
pip, qui permet d'installer le projet avec ses dépendances, grâce notamment à un fichier requirements.txt,

	
pipenv, qui va s'occuper du virtualenv et des dépendances avec son fichier pipfile,

	
poetry, qui s'occupe du virtualenv, des dépendances, et de la configuration d'autres outils avec son fichier pyproject.toml.

Comme les usages de ces outils se recouvrent, le contenu des fichiers de configuration se recouvrent également, et pour le coup, je n'ai pas envie de dupliquer des informations dans deux fichiers différents.

Faisons un petit bilan de ce que je souhaite pouvoir faire fréquemment, avec un ! quand la fonction est intégrée dans PyCharm :

	action
	setup.py
	pipenv
	pip
	poetry
	autre

	installation locale
	
python setup.py install !
	pipenv install .
	
pip install . !
	poetry install
	

	installation (développement)
	
python setup.py develop !
	pipenv install -e .
	
pip install -e . !
	
	

	génération du sdist
	
python setup.py sdist avec MANIFEST.in !
	
	
	poetry build
	

	génération du wheel
	
python setup.py bdist_wheel !
	
	
	poetry build
	

	publier sur pypi
	
python setup.py bdist_wheel upload !
	
	
	poetry publish
	twine upload dist/.

	nouvelle installation
	
	
	pip install -r requirements.txt
	
	

	créer un virtualenv
	
	
pipenv !
	
	
poetry !
	
virtualenv !

	dépendances directes
	dans setup.py ! ou setup.cfg

	dans Pipfile !
	
	dans pyproject.toml

	

	dépendances (développement)
	dans setup.py ! ou setup.cfg

	dans Pipfile !
	dans requirements.txt !
	dans pyproject.toml

	

	dépendances complètes
	
	dans Pipfile.lock !
	dans requirements.txt !
	dans pyproject.toml

	

	mypy (analyse de code)
	dans setup.cfg

	
	
	
	

	flake8 (formattage du code)
	dans setup.cfg

	
	
	dans pyproject.toml

	

	black (formattage du code)
	
	
	
	dans pyproject.toml

	

	isort (formattage du code)
	dans setup.cfg

	
	
	dans pyproject.toml

	

	tox (tests unitaires)
	dans setup.cfg

	
	
	dans pyproject.toml

	

	Travis CI (tests unitaires)
	
	
	
	
	dans .travis.yml

	Heroku (déploiement Django)
	
	dans Pipfile.lock

	dans requirements.txt

	
	

	git
	
	
	
	
	dans .gitignore

	n° de version dans le code
	from package import __version__
	
	
	importlib_metadata
	

Quelques détails concernant l'intégration PyCharm :

	pour exécuter une commande setup.py, j'ai un menu Run setup.py Task avec le raccourci clavier et une complétion et une liste déroulante des commandes possibles,

	si je tape import django et qu'il n'est pas listé comme dépendance dans setup.py, requirements.txt ou Pipfile, PyCharm me propose de l'ajouter,

	PyCharm fait le boulot tout seul pour la création des virtualenv, que ce soit via virtualenv, pipenv ou poetry.

Si je veux utiliser un peu tous ces outils, il faudrait setup.py, setup.cfg, requirements.txt, Pipfile et pyproject.toml, avec des redondances (beaucoup). Trop pénible, il faut donc choisir.

Utiliser pipenv ne me semble pas être une bonne idée car trop limité par rapport à poetry (sans compter que j'ai lu quelques petits trucs négatifs à droite et à gauche sur pipenv).

Exit donc pipenv.

Utiliser poetry imposer pour moi l'un des choix suivants :

	abandonner complètement setup.py,

	une dépendance supplémentaire pour lire le pyproject.toml et en extraire les infos pour exécuter setup.py (on perd l'intérêt d'un setup.py toujours exécutable),

	accepter d'avoir des informations redondantes à gérer à la main,

	regénérer automatiquement setup.cfg quand on modifie pyproject.toml.

Utiliser poetry me permettrait d'abandonner setup.py en supprimant en même temps MANIFEST.in et setup.cfg.

Malheureusement, je souhaite pouvoir utiliser Heroku, avoir ma version dans le code Python, installer en mode développement et je tiens à mon intégration PyCharm.

En attendant une bonne intégration dans PyCharm et que les outils manquants (comme Heroku ou mypy) permettent d'utiliser le pyproject.toml, je pense que je vais rester sur du classique :

	
setup.cfg pour tout y noter sauf les dépendances,

	
setup.py presque vide (en y marquant uniquement les dépendances),

	
MANIFEST.in,

	
requirements.txt,

	
virtualenv pour générer le virtualenv.

Bref :

	je vais continuer à regarder le prometteur poetry,

	je mets pipenv à la poubelle,

	je vais rester sur setup.py, setup.cfg, MANIFEST.in, requirements.txt et virtualenv en attendant,

	je n'ai pas regardé les perfs (même si apparemment poetry est meilleure que pipenv).

Au passage, ça serait vraiment pas mal de pouvoir définir une bonne partie de ma configuration PyCharm dans un fichier de configuration, pour permettre à quelqu'un d'autre de configurer rapidement le projet.

Il est en effet nécessaire de définir :

	l'interpréteur Python,

	une ou plusieurs commandes à exécuter en cas de modification d'un fichier (Filewatcher) avec leur « scope » de surveillance,

	plusieurs run configurations,

	les paramètres de plusieurs langages ou frameworks (comme Django, npm, Javascript),

	lister les plugins nécessaires,

	exclure quelques dossiers de la recherche (dossiers qui n'existent pas toujours dès le début).

Le fichier .editorconfig se limite à l'aspect du code.

Aller un peu plus loin serait un vrai plus, même si on peut maintenant versionner les run configurations.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

