

Journal Flex mon ami !

Posté par forc3 le 31 janvier 2005 à 13:59.

Étiquettes :
aucune

[image:]

** toutes mes excuses pour le formattage de code foireux

** mais je n'obtiens pas les tabulations avec les balises code

** Donc j'utilise pre mais du coup les inf et sup des include sont pas

** affichés. J'espère que c'est un problème du à la css que j'utilise...

** Les lignes vides sont une des conséquences aussi...

De retour avec de nouvelles aventures à propos de flex, c'est outil

magnifique qui vous fait gagner du temps, de la sécurité, et de la

maintenabilité. Mais passons cette description qui bien sûr ne

satisfera pas tout le monde. Mais je m'en cogne. Je viens juste ici

vous livrez un peu de mon expérience à avec outil.

Un peu de 'background', j'ai toujours trouvé l'écriture de parser

très très lourd. Je me suis rendu compte très vite que pour faire

quelquechose de maintenable c'était impossible, car personne

n'avait le courage de replonger le nez dans ses lignes, même moi

l'auteur détestait me rendre compte que je devais y retourner.

Un beau jour, au gré de mes balades internet, il y a un moment je

tombe sur flex, et plus tard bison. Etant déjà grand utilisateur de

perl pour ses expressions rationnelles, j'ai trouvé l'approche très

intéressante de flex. Aimant la performance et ne supportant pas

savoir que ma chaine de caractère va être dupliquée X fois en

mémoire juste pour matcher un simple motif, j'ai vite abandonné

perl pour parser quoi que ce soit. L'énorme avantage de flex c'est

qu'il ne fonctionne pas par ligne. C'est beaucoup plus simple de

trouver des liens web dans une seule ligne qu'en Perl. Et c'est en

plus beaucoup plus efficace...

Une fois la maîtrise de l'outil, je me disais que c'était bien la

classe mais j'aurais vraiment voulu essayer d'étendre ses

possibilités autre part que sur des fichiers ... Sur des socket ca

serait fort intéressant. C'est à la suite du developpement d'un

serveur IMAP dont le parseur est écrit intégralement en flex/bison,

que me suis heurté au problème spécifique des sockets et de la

programmation réseau. C'est à dire, que tous les gens qui me

parlent ne pensent qu'a tenter de faire des overflow sur mes

buffer, et qu'ils prennent un malin plaisir à ouvrir des connexions

sans rien n'y faire.

C'est constation faite, je trouvais insoutenable de me voir ainsi à

la merci de n'importe qui. Il me fallait une solution. C'est une

mission pour moi !

Je vais donc vous présenter ici ma méthode pour rendre flex,

utilisable comme moteur principal d'une application utilisant un

protocole bien défini. Au hasard HTTP...

Cependant avant de passer au HTTP, je vais le faire sur un exemple

très simple. Un protocole utilisant des headers déjà très courant

sur internet ;p.

Récapitulons ce que nous cherchons à faire:

- lire un flux de données, avec un timeout

- lire un flux de données en controlant leur taille.

Ce qui veut dire que notre serveur ne dois attendre des données que

pendant un certains temps, et doit pouvoir vérifier qu'il n'a pas

reçu trop de données...

Afin de rendre possible ces deux choses nous avons besoin de rendre

notre fonction flex capable d'attendre des données seulement

pendant une durée définie, et capable de savoir combien de données

il me reste à lire. Pour la première chose c'est très simple, il

suffit de passer le fd en O_NONBLOCK et d'appeler poll dessus avant

de faire un read(). Pour la seconde chose nous allons utilisez ce

que le protocole ont prévus pour cela, c'est à dire le

Content-Length...

Pour bien comprendre ce que nous allons faire, il faut juste noter

que nous allons faire avec flex un parseur capable de s'arréter

s'il n'a rien lu, et surtout d'extraire du flux lui même la

quantité de données à lire.

Pour les paranoiaques comme moi, on notera qu'il est très important

de fixer une limite à la quantité des données à lire, il est hors

de question d'accepter toutes les valeurs...

Assez de blah blah, entrons dans le code. Première chose on

redéfini la fonction de lecture de flex !

#define YY_INPUT(buf, result, max_size) \

 do { \

 int ret = 0; \

 struct pollfd fds; \

 fds.fd = 0; \

 fds.events = POLLIN; \

 if (! poll(&fds, 1, 5000)) { \

 fatal = 1; \

 result = 0; \

 YY_FATAL_ERROR("input in flex scanner failed timeout reading") \

 goto skip_reading; \

 } \

 if (fds.revents & (POLLOUT | POLLERR | POLLHUP)) { \

 fatal = 1; \

 result = 0; \

 goto skip_reading; \

 } \

 if ((result = read(0, (char *) buf, max_size)) < 0) { \

			fatal = 1; \

			result = 0; \

 YY_FATAL_ERROR("input in flex scanner failed") \

 } \

skip_reading: \

 } while (0)

Ainsi flex va utiliser ce code pour lire des données, les attentifs

auront notés que ce code ne contient pas le passage du fd en

O_NONBLOCK, enfait c'est fait avant d'appeler yylex(). La

différence fondamentale entre le faire et ne pas le faire c'est que

le read sera bloquant ou pas, par contre il n'y aura aucune

différence sur la fonction poll(). Dans certains cas, il est

possible de ne pouvoir lire des données après la sortie d'une

fonction de monitoring de fd (poll(), select(), kqueue(), sigio,

epoll() etc). Donc dans un cas le read retourner -1 et errno a

EAGAIN, alors que dans l'autre il va bloquer jusqu'à obtenir des

données. Ce sont vos tests qui décideront de la validité de mettre

le fd en O_NONBLOCK, c'est pour cela que ce n'est pas inclu dans la

macro.

Autre problème, la fonction YY_FATAL_ERROR, sort définitivement du

lexer. Moi je ne veux pas qu'un timeout me fasse sortir, donc je

redifini la fonction YY_FATAL_ERROR.

#define YY_FATAL_ERROR(msg) fatal_error(msg);

J'aurais bien sur inseré cette ligne avant la macro YY_INPUT...

Le code de ma fonction fatal_error est le suivant

static void fatal_error(const char *msg)

{

 printf("fatal error: %s\n", msg);

 fatal = 1;

}

Vous aurez compris, je pense, que ma variable fatal est du type

extern volatile int, et est utilisée dans la boucle principale du

programme appelant la fonction yylex(). C'est un exemple, a vous

d'adapter en fonction de vos besoins/idées.

Maintenant passons à l'étape, lecture de données bornée. Flex nous

mets à disposition la fonction input() qui va appeler notre

fonction de lecture si besoin est, et nous retourner le caractère

suivant. C'est elle qui va être au coeur de notre gestion de

donnée... Et voici comment:

T_CONTENT_SIZE ^content-size:\ [0-9]+$

T_END_OF_HEADER \n\n

%%

{T_CONTENT_SIZE} {

 bytes = atoi((const char *) &yytext[14]);

 if (bytes < 0)

 bytes = 0;

 printf("+ CS %d\n", bytes);

}

{T_END_OF_HEADER} {

 already_read = 0;

 int ret;

 buffer = malloc(sizeof(char) * bytes);

 if (buffer) {

 for (already_read = 0; already_read < bytes; already_read++) {

 ret = input();

 if ((ret == EOF) || (ret == 0) || fatal) {

 printf("error: end of input after reading only %d bytes.\n", already_read);

 yyterminate();

 break;

 }

 buffer[already_read] = ret;

 }

 }

}

Alors, nous utilisons content-size, pour le fun, changer le en

content-length ca marche autant ... Ensuite nous utilisons le motif

T_END_OF_HEADER afin de marquer le passage entre headers et data.

C'est très proche du HTTP... C'est voulu.

Dans le flux lorsque nous trouvons T_CONTENT_SIZE, nous récupérons

la valeur, (il faut checker errno avec atoi pour différencier de 0

et de 0 à cause d'une erreur, ne faites pas comme moi ...) nous la

stockons dans bytes.

Après à la fin de headers après T_END_OF_HEADER, nous allouons

assez de mémoire pour recevoir les données. Une simple boucle

permet de remplir le buffer tout justement alloué. Remarquer bien

que nous ne lisons pas plus que bytes... Nous n'écrasons rien.

(On peut/_doit_ tout a fait prévoir une vérification plus solide de bytes,

en la bornant à un certain maximum...)

Nous testons tous les valeur de retour de input() afin d'agir en

conséquence et de gérer une éventuelle déconnexion, ou erreur de

lecture. Libre à vous encore une fois d'appeler yyterminate() ou

pas.

Voici le code entier du programme compilable de cette manière:

- flex -Cr -i test.lex

- gcc lex.yy.c -o input_test

test.lex

{

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <fcntl.h>

#include <sys/types.h>

#include <poll.h>

static unsigned long bytes;

static unsigned long already_read;

static char *buffer;

static int fatal;

static void fatal_error(const char *msg);

#define YY_FATAL_ERROR(msg) fatal_error(msg);

#define YY_INPUT(buf, result, max_size) \

 do { \

 int ret = 0; \

 struct pollfd fds; \

 fds.fd = 0; \

 fds.events = POLLIN; \

 if (! poll(&fds, 1, 5000)) { \

 fatal = 1; \

 result = 0; \

 YY_FATAL_ERROR("input in flex scanner failed timeout reading") \

 goto skip_reading; \

 } \

 if (fds.revents & (POLLOUT | POLLERR | POLLHUP)) { \

 fatal = 1; \

 result = 0; \

 goto skip_reading; \

 } \

 if ((result = read(0, (char *) buf, max_size)) < 0) { \

			fatal = 1; \

			result = 0; \

 YY_FATAL_ERROR("input in flex scanner failed") \

 } \

skip_reading: \

 } while (0)

%}

T_CONTENT_TYPE ^content-type:\ [^ \n]+$

T_CONTENT_SIZE ^content-size:\ [0-9]+$

T_END_OF_HEADER \n\n

%%

{T_CONTENT_TYPE} {

 printf("+ CT %.*s\n", yyleng - 14, &yytext[14]);

}

{T_CONTENT_SIZE} {

 bytes = atoi((const char *) &yytext[14]);

 if (bytes < 0)

 bytes = 0;

 printf("+ CS %d\n", bytes);

}

{T_END_OF_HEADER} {

 already_read = 0;

 int ret;

 buffer = malloc(sizeof(char) * bytes);

 if (buffer) {

 for (already_read = 0; already_read < bytes; already_read++) {

 ret = input();

 if ((ret == EOF) || (ret == 0) || fatal) {

 printf("error: end of input after reading only %d bytes.\n", already_read);

 yyterminate();

 break;

 }

 buffer[already_read] = ret;

 }

 }

}

%%

static void fatal_error(const char *msg)

{

 printf("fatal error: %s\n", msg);

 fatal = 1;

}

int main()

{

 fatal = 0;

 buffer = 0;

 yyin = stdin;

 yylex();

 printf("found %d bytes of data:\n%.*s\n", already_read, already_read, buffer);

 if (buffer)

 free(buffer);

 return 0;

}

En espérant que ça puisse vous vous inciter à coder

vos parsers avec des outils fait pour. Ca nous éviterait d'avoir

un nombre incalculable d'overflow dans les moindres petites fonctions

d'analyses de flux/caractères... Le libre en aurait bien besoin...

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

