

Journal installation d'une debian chiffrée via LUKS sur un VPS

Posté par freem le 04 février 2020 à 20:37.
Licence CC By‑SA.

Étiquettes :

	debian

[image:]

Salut.

En préambule, je tiens a préciser que je ne suis pas un sysadmin, que le titre est un peu menteur, que les propos qui suivent n'ont pas encore été testés sur la cible réelle mais juste sur VM locale et enfin que je viens de valider que ça boote et déverouille le système sur ma VM…

Il y a quelques jours, j'ai finalement fait le nécessaire pour louer un VPS (pour héberger mes délires perso, faire joujou, etc, rien de sérieux), chez un hébergeur du nom d'OVH. Je comptais réinstaller le système complet, d'une manière ou d'une autre, mais pas nécessairement chiffrer le disque, n'ayant aucune expérience sur le sujet. Quelques discussions sur irc plus tard, j'ai finalement décidé de le chiffrer, d'une part pour le jeu, et d'autre part parce que, franchement, y'a 0 sécurité à la location d'un VPS chez OVH: ils m'ont envoyé, dans un seul mail non-signé, une IP, et un message qui dit, en gros: "voila, vous pouvez vous logguer via l'utilisateur root avec le password 123456". J'exagère sur le password, il y avait aussi des lettres, mais la taille est a peu près celle-ci. Ah, et bien sûr, le fingerprint du ssh du serveur… n'est pas indiqué (je ne mentionne pas le fait que le /etc/sources.list, de mémoire, n'utilise pas les serveurs debian, mais un repo OVH, ce que je peux comprendre, mais j'aurais préféré un proxy genre apt-cacher-ng, histoire de réduire la taille de la chaîne de confiance, un petit peu (certes, un proxy peut bidouiller les paquets, mais on peut ensuite vérifier les signatures à partir d'une machine locale, j'imagine)?).

Je suppose que ce mode laxiste est pour éviter de surcharger la hotline, mais j'aurais aimé avoir l'option d'un truc un peu plus sécurisé, comme on a sur les forges logicielles: la possibilité d'envoyer une clé publique, et qu'il ne soit possible de le logguer que par elle si elle a été envoyée. Si ça existe, j'ai pas trouvé. Bref.

OVH propose plusieurs modes de démarrage pour ses VPS:

	reboot simple: on reste sur le système principal;

	rescue mode: un système custo d'OVH, qui détecte le disque principal en tant que /dev/sdb, et le monte dans /mnt/sdb1. Oui, tout est installé sur une seule partition…

	réinstallation: non, ce n'est pas "mettre l'iso de debian dans le lecteur CD virtuel et attendre l'utilisateur", mais plutôt "on vous réinstalle tout ça, on se charge de tout…";

Donc, pas moyen de passer par les outils Debian officiels sur ce coup. Au final, on en est réduit à faire en gros ce que j'avais fait ici, a savoir passer par debootstrap. Comme quoi…

Sans plus vous embêter, je vous colle le script dans l'état actuel, il reste pas mal de boulot dessus, je ne vous le cache pas, d'ailleurs ça se voit: y'a du code zombie, des TODO, des valeurs hard-codées, des commentaires probablement faux/obsolètes, le -x du debug, l'absence de -e d'un truc fini… bref, exemple pas génial de mes capacités (qui ne le sont pas, du coup, ça colle) :)

#!/bin/sh -x

#TODO
unmount partitions on fail
prev point includes closing cryptsetup volumes

die()
{
 echo $@
 exit 1
}

mkd()
{
 test -d "${1:="mkd() needs target as param 1"}" || mkdir "$1"
}

CIPHER="aes-xts-plain64"
KEYSZ="512"
HASH="sha512"
KEYFILE="srvcryptkey"

disk preparation
findmnt /dev/sdb1 >/dev/null && umount /mnt/sdb1
apt-get install --yes --no-install-recommends syslinux cryptsetup-bin debootstrap dosfstools
sfdisk /dev/sdb < disk.part
dd if=/usr/lib/SYSLINUX/gptmbr.bin of=/dev/sdb

echo syncing disk... and udev.
sync
sleep 10
mkfs.vfat -I -n BOOTLOADER /dev/disk/by-partlabel/BOOTLOADER

test -n "$KEYFILE" -a -r "$KEYFILE" || die 'KEYFILE must be a valid, normal and readable file'

#for mntpoint in data mainsys mainvar backsys
for mntpoint in data mainsys mainvar
do
 ## crypto ##
 PART="/dev/disk/by-partlabel/${mntpoint}"
 cryptsetup -v -c $CIPHER -s $KEYSZ -h $HASH luksFormat "${PART}" - < "${KEYFILE}"
 cryptsetup open "${PART}" "${mntpoint}" --type luks --key-file - < "${KEYFILE}"
 ## formating ##
 mkfs.ext4 -F -L "${mntpoint}" "/dev/mapper/${mntpoint}"
done

mount & bootstrap
mkd "/mnt/boot"
mount "PARTLABEL=BOOTLOADER" "/mnt/boot"

fallback system if things go bad someday
#mkd "/mnt/backsys"
#mount "/dev/mapper/backsys" "/mnt/backsys"
#mkd "/mnt/backsys/home"
#mount "/dev/mapper/data" "/mnt/backsys/home"

main system
mkd "/mnt/mainsys"
mount "/dev/mapper/mainsys" "/mnt/mainsys"
mkd "/mnt/mainsys/var"
mount "/dev/mapper/mainvar" "/mnt/mainsys/var"
mkd "/mnt/mainsys/home"
mount "/dev/mapper/data" "/mnt/mainsys/home"

supposedly, there is only one NIC around... and your lspci format is same as mine's!
ETH_MODULE="$(lspci -v | awk 'BEGIN{flag=0}/^[0-9:.]* Ethernet controller:/{flag=1}/^$/{flag=0}/^[\t]*Kernel modules/{if(flag && (x=index($0,":")))printf "%s\n",substr($0,x+2)}')"

if test -d etc
then
 for system in mainsys
 #for system in backsys mainsys
 do
 cp -ar "etc" "/mnt/${system}/"
 chown -R root:root "/mnt/${system}/etc"
 printf "127.0.0.1 localhost\n127.0.1.1 %s\n::1 localhost\n::1 %s\n" "$(cat etc/hostname)" "$(cat etc/hostname)"
 done
fi

BASE_PKGS="runit-init,linux-image-$(dpkg --print-architecture),busybox-static,cryptsetup-initramfs,dropbear-initramfs"
SYSLINUX_PKGS="syslinux,syslinux-efi,syslinux-common,syslinux-utils"
EFI_PKGS="efibootmgr,efitools,efivar,dosfstools"
TOOLS_PKGS="openssh-server,iptables,udhcpc,iproute2"
PKGS="$BASE_PKGS,$SYSLINUX_PKGS,$EFI_PKGS,$TOOLS_PKGS"

main system pre-setup
mkd /mnt/mainsys/etc
mkd /mnt/mainsys/etc/dropbear-initramfs/
cp srvcryptkey /mnt/mainsys/etc/lukskey
cp authorized_keys /mnt/mainsys/etc/dropbear-initramfs/
cat > /mnt/mainsys/etc/crypttab <<EOF
mainsys PARTLABEL=mainsys none cipher=$CIPHER,size=$KEYSZ,hash=$HASH
mainvar PARTLABEL=mainvar /etc/lukskey cipher=$CIPHER,size=$KEYSZ,hash=$HASH
home PARTLABEL=data /etc/lukskey cipher=$CIPHER,size=$KEYSZ,hash=$HASH
EOF

cat > /mnt/mainsys/etc/fstab <<EOF
tmpfs /tmp tmpfs 0 0
tmpfs /run tmpfs 0 0
/dev/mapper/mainsys / ext4 rw 0 1
/dev/mapper/mainvar /var ext4 rw 0 0
/dev/mapper/data /home ext4 rw 0 0
EOF

fallback system pre-setup
mkd /mnt/backsys/etc
mkd /mnt/mainsys/etc/dropbear-initramfs/
cp srvcryptkey /mnt/backsys/etc/lukskey
cp authorized_keys /mnt/mainsys/etc/dropbear-initramfs/
cat > /mnt/backsys/etc/crypttab <<EOF
mainsys PARTLABEL=backsys none cipher=$CIPHER,size=$KEYSZ,hash=$HASH
home PARTLABEL=data /etc/lukskey cipher=$CIPHER,size=$KEYSZ,hash=$HASH
EOF

cat > /mnt/backsys/etc/fstab <<EOF
tmpfs /tmp tmpfs 0 0
tmpfs /run tmpfs 0 0
PARTLABEL=backsys / ext4 rw 0 1
PARTLABEL=data /home ext4 rw 0 0
EOF

installing them
debootstrap --variant=minbase --include=$BASE_PKGS buster /mnt/mainsys
#debootstrap --variant=minbase --include=$BASE_PKGS buster /mnt/backsys

for system in mainsys
#for system in backsys mainsys
do
 for user in $(cut -d: -f1 passwords)
 do
 # vars here are *not* meant to be protected when used
 SKEL="$(test -d "${user}" && printf "--skel ${user}")"
 GROUP_LIST="$(sed -n '/'"${user}"'/ s!:!,!gp' passwords | cut -f1,2 -d, --complement)"
 GROUPS="$(test -n "${GROUP_LIST}" && printf "-G ${GROUP_LIST}")"
 #TODO create non-existing groups before that
 #TODO glibc might have version conflicts for useradd
 test "${user}" = "root" || useradd -R "/mnt/${system}" $SKEL $GROUPS --create-home "${user}"
 done
 cut -d: -f1,2 passwords | chpasswd -R "/mnt/${system}"
 for metafs in dev sys proc
 do
 mount --bind /${metafs} /mnt/${system}/${metafs}
 done
 chroot /mnt/${system} update-initramfs -u
 for metafs in dev sys proc
 do
 umount /mnt/${system}/${metafs}
 done
done

syslinux -i /dev/disk/by-partlabel/BOOTLOADER
cat > /mnt/boot/syslinux.cfg <<EOF
timeout 50
#prompt 0
#ui vesamenu.c32
menu title what should I boot?
append ro crypto=$HASH:$CIPHER:$KEYSZ:0:
default mainsys

label mainsys
 menu label debian buster
 linux /buster/vmlinuz
 initrd /buster/initrd.img
 append rootfstype=ext4 cryptroot=PARTLABEL=mainsys cryptdm=root dropbear root=/dev/mapper/mainsys ip=192.168.1.185:::255.255.255.0:test:enp0s8
EOF

mkd /mnt/boot/buster/
cp /mnt/mainsys/initrd.img /mnt/mainsys/vmlinuz /mnt/boot/buster/

Pour donner un peu de contexte sur l'idée initiale, je voulais avoir en gros un disque formaté en GPT, voire si je peux utiliser EFI (il me faut encore expérimenter ça) formaté ainsi:

	1 partition de «data», le «/home», encore que j'ai un doute sur son affectation;

	1 partition de «bootloader», le «/boot/EFI», d'a peu près 256Mio (histoire d'être peinard);

	1 partition «backsys», ou système de secours, au cas ou une MàJ pète le principal, avec 768Mio. Son installation est zombifiée, debootstrap échouant avec «si peu» d'espace…

	1 partition «mainsys», 2Gio, le «/» quoi;

	1 partition «mainvar», 2Gio, le «/var»;

parce que le VPS en question n'a que 20Gio d'espace disque, et puis, c'est un serveur, 5Gio pour le système, c'est déjà excessif pour moi.

Les systèmes qui résultent de ce script se baserons sur runit, qui dans buster est un est init packagés (avant, il n'y avais que le runsvdir qui l'étais sous forme de paquet assez clean) qui réutilise les scripts de sysV/rc.d, comme l'a fait systemd-init a une époque.

Ils sont aussi très minimaux, et selon ma VM, ça nécessite moins de 600Mio d'espace disque (tiens, c'est gros ça, c'est louche), il reste a installer le confort, mais ça me semble une bonne de travail.

Je voulais le partager, à la fois pour voir vos réactions, parce que, l'air de rien, ce trucs m'a demandé plusieurs jours, et parce que je n'ai pas été foutu de trouver une vraie doc sur comment faire…

Ah, j'oubliais… quand on se log via ssh sur la cible, il faut utiliser la commande cryptroot-unlock.

Merci à ceux qui ont lu jusqu'ici, m'en vais raffiner ça, tester, raffiner, tester, et p'tet même «pousser en prod» (mais probablement pas ce soir, le poussage sur vrai système…).

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

