

Journal \BlueLaTeX reloaded sort en bêta !

Posté par Lucas le 07 mai 2014 à 20:07.
Licence CC By‑SA.

Étiquettes :

	latex

	éditeur

	bêta

	couchdb

[image:]

Sommaire

	
	Mékeskecé ?

	Historique

	
Fonctionnalités
	Gestion des papiers

	Édition de papier

	Comment qu'c'est qu'on essaye ?

	Architecture globale

	Et la licence ?

	Pour finir

Allez, je me fends de mon premier journal pour vous présenter un projet qui m'occupe pas mal depuis quelques années, à l'occasion de la première version bêta publique de \BlueLaTeX, disponible sur la page des releases.

Mékeskecé ?

\BlueLaTeX est tout simplement une plateforme d'édition collaborative de documents en \LaTeX.

Le projet consiste en plusieurs modules :

 - le gestionnaire d'utilisateurs et de documents,

 - le serveur de synchronisation de fichiers,

 - le serveur de compilation des documents,

 - un client web

 - …

Je reviendrai sur les différents modules par la suite, mais voilà globalement la structure du projet.

Une instance d'une ancienne version de \BlueLaTeX est hébergée et utilisable sur publications.li.

La version bêta ne devrait pas tarder à y être disponible en test.

Historique

Le tout premier prototype de \BlueLaTeX a été écrit par Martin en 2010 afin d'explorer l'idée d'un éditeur collaboratif en temps réel de documents en \LaTeX.

Ce prototype était écrit en php, le serveur de synchronisation mobwrite en python, et le client utilisait prototype.

L'idée était de créer facilement un document \ĻaTeX et de partager un simple lien entre les différents auteurs du document pour travailler dessus.

En 2011, le prototype est amélioré pour ajouter une interface Rest plus propre séparant clairement la livraison du contenu du client de la logique de gestion des documents.

Le client pour sa part abandonne prototype pour YUI, le serveur est resté fidèle au php avec une utilisation intensive de RewriteRule.

J'ai commencé à y mettre mon grain de sel début 2011, mais je n'aimais pas le php.

J'ai donc effectué un lobbying pour utiliser autre chose et début 2012, le serveur est enfin entièrement réécrit en scala et fonctionne.

Cette nouvelle version n'expose qu'une interface Rest et ne s'occupe pas du tout de l'application web, décorrélant la logique du client.

Le but est d'avoir un serveur qui peut être utilisé par n'importe quel client qui parlerait correctement à l'interface.

Un nouveau client est réécrit par Martin en GWT, ni lui ni moi n'étant spécialiste de javascript.

La synchronisation est toujours effectuée par mobwrite à qui le serveur délègue les requêtes.

Cette version est celle qui tourne depuis 2012 sur publications.li.

Tout au long de ces générations du service, une ligne directrice s'est précisée pour Martin et moi même : fournir une plateforme d'édition collaborative, d'accord ! Mais une plateforme qui cible en premier lieu les publications scientifiques.

De nouveaux concepts sont donc venus se greffer, rendant la maintenance du code un poil difficile.

Mi 2013, nous avons donc entamé une réécriture complète du serveur, toujours en scala, avec une architecture modulaire permettant de séparer les concepts proprement, et de fournir une API propre et claire.

Le code du serveur de synchronisation tenant plus du prototype que du code à mettre en production (notamment beaucoup de choses codées en dur), nous décidons de le réécrire.

La théorie de Neil Fraser très intéressante mais le protocole est assez rudimentaire.
Audric nous rejoint à ce moment et s'attèle à cette tâche.

La nécessité de faire un nouveau client web, un poil moins austère que l'actuel s'est rapidement faite sentir.

Au début de l'année nous rejoint donc Thomas qui entame l'écriture du nouveau client web avec angularjs.

Et nous voici au point où la première bêta de la réécriture est prête et la deuxième est dans les tuyaux.

Fonctionnalités

Cette nouvelle mouture est censée être isofonctionelle à l'ancienne, et bien sûr apporte certaines améliorations que voici.

Toutes les fonctionnalités sont disponibles dans le client web par défaut qui fait uniquement des appels à l'API Rest.

Il est donc possible d'utiliser n'importe quel client qui sait faire des requêtes HTTP.

La seule limitation dans cette première bêta (et pour la première version en fait) est qu'il est nécessaire d'avoir une session basée sur des cookies.

La gestion de l'authentification OAuth est planifiée pour la version 1.1.0.

Gestion des papiers

[image: List des papiers]

Dans un premier temps, un utilisateur connecté a accès à la page de gestion de ses papiers.

Il peut en créer de nouveaux, en supprimer, ou lancer l'édition d'un papier existant.

L'auteur d'un papier peut ajouter d'autres auteurs, qui verront à leur tour le papier apparaître dans leur liste, et pourront commencer à travailler dessus.

Un rôle de relecteur est aussi disponible, qui s'intégrera dans le workflow classique d'une soumission de papier scientifique que nous souhaitons intégrer dans \BlueLaTeX à moyen terme.

Un relecteur a un accès en lecture seule au papier, et pourra par la suite le commenter et l'annoter.

Édition de papier

[image: Édition de papier]

La page d'édition d'un papier est composée d'un éditeur de texte, de la liste des fichiers et ressources du papier (fichiers TeX, BibTeX, images, …) et du rendu du papier compilé en pdf.

L'éditeur propose la coloration syntaxique et les fichier édités sont synchronisés en temps réel entre toutes les personnes connectées travaillant dessus.

Le support de SyncTeX permet de naviguer facilement entre l'éditeur et le pdf compilé, dans les deux sens.

Il est aussi possible de configurer la manière dont le document est compilé, notamment le compilateur à utiliser et l'intervalle entre deux compilations.

Les compilations se font en arrière plan, et ne sont pas lancées par l'auteur du papier.

Cette fonctionnalité est un essai, afin de voir si c'est plus simple et utilisable que l'ancien comportement où la compilation était lancée à l'initiative de l'utilisateur.

Il est possible de charger des images ou autres ressources associées à un papier, ces ressources ne sont pas synchronisées et n'ont pas vocation à être éditées dans le client web.

Si vous souhaitez créer un nouveau fichier synchronisé et éditable, il suffit de passer par l'interface du client web.

Comment qu'c'est qu'on essaye ?

Malheureusement, un bug de jeunesse nous empêche de faire une instance de test avec un utilisateur de test pour vous montrer cette bêta, j'espère pouvoir le corriger d'ici la prochaine.

En attendant, si vous souhaitez essayer chez vous, il vous suffit de télécharger l'archive de cette bêta, de la décompresser sur votre ordinateur, et de lancer la script dans le répertoire bin.

Afin que ça fonctionne correctement, il faut installer les dépendances nécessaires :

 - couchdb en version 1.2.0 minimum,

 - une JVM en version 7 minimum,

 - il vous faudra un serveur smtp aussi pour valider l'inscription (FakeSMTP fait très bien l'affaire),

 - et je crois que c'est tout…

Vous pouvez vous rendre sur http://localhost:8080/web/index.html et tester votre installation.

C'est une première bêta et toute la mécanique pour lancer proprement en démon n'est pas incluse mais devrait venir dans la prochaine.

Cette version n'est évidemment pas faite pour être mise en production mais vous pouvez tester à souhait.

Si vous vous sentez l'âme aventureuse et voulez tester en mode développement, il vous faudra 2 dépendances de plus :

 - sbt pour compiler le tout,

 - jsvc pour lancer le serveur de développement en démon.

Si vous avez toutes les dépendances installées, récupérer la dernière version et la lancer devrait être aussi simple que :

```sh

$ git clone git@github.com:gnieh/bluelatex.git

$ cd bluelatex

$ sbt



blueStart

blueStop

```


Si ce n'est pas aussi simple, un rapport de bug est le bienvenu pour améliorer tout ça.

Pour la prochaine bêta, et la version finale, nous travaillerons à améliorer la documentation de la configuration du serveur, pour le moment c'est assez peu (comprendre pas du tout) documenté.

Architecture globale

Sans rentrer dans les détails (loin de là), le serveur est conçu de façon modulaire, permettant d'ajouter ou retirer des fonctionnalités entières.

Par exemple le cœur du serveur, nécessaire pour pouvoir le faire tourner, contient la gestion des utilisateurs et des papiers.

La synchronisation est un module à part car le choix est donné entre notre implémentation du protocole ou l'implémentation originale de mobwrite.

Cette possibilité est donnée afin de pouvoir mieux s'intégrer dans une infrastructure existante qui utilisait l'implémentation originale.

Le module de compilation est complètement optionnel, car il est fort possible d'imaginer un client lourd qui permet aux différents auteurs de synchroniser leur travail, mais de compiler sur leur machine.

De nouveaux modules avec d'autre fonctionnalités sont dans les tuyaux pour les versions à venir, ce sera le moment de vérité afin de voir si notre architecture tient le coup !

\BlueLaTeX est en fait un ensemble de bundles OSGi qui devrait pouvoir tourner avec n'importe quelle implémentation de la spécification.

Nous utilisons par défaut felix, mais a priori vous devriez pouvoir vous en sortir avec equinox, knopflerfish ou autre.

Et la licence ?

Le tout vous est fourni sous licence Apache version 2.0

Pour finir

Toute idée, tout commentaire, toute critique constructive, tout rapport de bug, toute contribution, sera accueilli avec plaisir.

N'hésitez pas à ouvrir un ticket ou à nous rejoindre sur irc à #bluelatex@freenode.

Merci d'avoir pris le temps de me lire, et j'espère que ce projet vous plaira autant qu'il nous occupe, et que nous pourront l'améliorer grâce à vos retours.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/c44b0d046eaee89fcba4ac0785429cbecc3cf225402ebc65453f6038.png
Fle Edit View History Bookmarks Tools Help
RFsM—A.. | [

72 Persisten... | B Actors —

& Scala Do... |

[©same us.

[inputstre...| & Bundieco.. | & No acces... [@java emp... [[EPushback S Apache C...| b Paper

QL@ 0

& > @ [@ ntpiocainost:8080/wer

()Gist - GitHub 38 The Scala Progra... [T4 LEO Deutsch-Fran... ()Daiy scala [JMichid's Weblog £ }Citroen DS £’} Subscribe with i

’IEX Share Send to Arx

New Paper Papers () Fork me

= Compile \, Download v Emacs users A3 5V | Auto
7
%= Resources 71 \paragraph{Solution 2}: Each conpilation adds a new version 36 Adding syntaxt highlighting
7
Ak lvoncald bt wo st o A —
No resource found 73+ \subsection{Navigating into the history of the paper} S et o e e gt ot o T o st e ik
73 With the GIT synchornization, o Slider could enobie Ravigating into the past e e e s T o et
L7 fresrbeticy
We2525dae78234d5a.51 7 \qypsection(Separating the source panel and the view panel in two separate windows)
| we2Sabdac78234dsa e 1] This cod be an hady Gption her working n Sra sreens 57 Adding support for authontication
By e, poprs e ot by i URL. Poper o ol sl ot e i sl b, The
79+ \subsection{Adding a small chat}
80 Integrating a small off-the-shelf AJAX chat app could be nice to discuss about the autbentication would be eaey sizce the whole platform already uses HTTP Digest.
New file o e ALt coabarat ety varking o 51 45 Adding boskmarie
82~ \subsection{Adding syntaxt highlighting} An suthenticated user sy save th lnk to the paper i his bockmarks 5o b can fin themn quickly. These
tox of|| 8 A solution could e 1o use ane of the nany syntax highlighting J5 Libraries (shfs, et o B st it pap i i e b e s
Codenirror, Syntaxhighlioht). A Strong requirenents 1o that the underiying: textoréa ok s o e ieved s e i o ey b v T ol 4 e
Containing the raw TeX must remain compatible with mobwrite (our sync J5 Library). I did o poplate data for bibterbrowser to create an automatie bibliography for each user which may be then
previous unsuccessful attempts in this direction at the beginning of blue.publications ‘prblished and avalablo o integrate in a welsite
th
5 59 Support for usor-provided JS plugins
85 \subsection{Adding support for authentication) Withthe appropit hitestae, ey beable i sl octins n Jowpt o e ther
Upload a resource | % B serault, papers are protectea by thesr URLS. Paper ovners could select other users in it oo
p a’small box. The authentication would be easy since the whole platforn already uses HTTP
L 310 Rest APT for manipulating paper data and metadata
Select a file or drag a file 88 - \subsection{Adding booknarks} “This API & la GitHub API, would enable others to build services an top of blue publications li.
H
G An authenticated user may save the Link to the paper in his booknarks so he can find 11 Automated submission to arxiv.org
them quickly. These bookmarks can first be sibple link to the paper via its title, but Features suggestod by s Seoms important in mathematics snd physcs
the could atso evelve toward More structured booknarks which couid be viewsd and/or
organised by topic or Keyords. by cach vser. Tt couid atso be veed to poputate dota for 512 Views on the Paper
Dibtexbrovsar o crente. an autonatic bibtiography Tor cach veer which hay.be then
published and available to integrate in a website. Organizing the paper on difirent views (can be similr to organizing the paper in difeaent source fles)
o e e e S e e o ey o e e

92+ \subsection{Support for user-provided J plugins} monolitic e

93 With the appropriate architecture, users may be able to write small functions in

Javascript and share them with other users Proposkion : The user add tags in L peper to deine views. To be ciscumed.

0 .

95 \subsection{Rest API for manipulating paper data and metadata} 313 Annotations/Comments

96 This API & la GitHub API, would enable others to build services on top of blue.publicati Collaboratively writing a paper does mot always mean writing i simultancously. I could be nice to have &
ons. i st 10 metate ot s e ofth pape b ot s <o e when hey com back o the

97 v

98 - \subsection{Automated submission to arxiv.org) Nac relate (snd neroting) fsture s th alily o e the dif e Lt vt when o o comes

99 Features suggested by \. Seems important in mathematics and physics ‘back an the paper. If we use git s backend, it can be euily achieved by storin the last seen commit.

EPUB/46a7a45921509e44412457060e03671d9438bac9bb0e201d3ebb618f.png
<

Papers - Iceweasel
Fle Edit View History Bookmarks Tools Help

scala Do... [ERFSM—A.. |ERPersisten... | B Actors > 4 v

@ latex set pdf title Q & e~ é v @

[@same us... [@itHub Fi.. |4 Login [Einputstre...| & Bundieco.. [& No acces... [@ava emp... | pushback... | gniehblu... | e papers 3¢ [sApache C.

& D @y @ ntepiiocalhost:8080/web/index.html#/paper o

()Gist - Gittub 88 The Scala Progra... 4 LEO DeutscheFran... ()Daly scala [)Michid's Weblog™ { }Citroen DS

\- BT
Papers =

Subscribe with Mi

Test

New Paper Papers () Fork me

Sortby Te | Ascendng AL]

New paper
Role filter
| Al Title Role Options
Author | Plop author Delete
Reviewer ° | The Great Development Plan of BlueLateX author Delete

EPUB/avatars050045000avatar.jpg

