

Journal Git : les bases et guide d'utilisation en mode centralisé (à la SVN)

Posté par ghusson (site web personnel) le 24 novembre 2016 à 10:17.
Licence CC By‑SA.

Étiquettes :

	git

	svn

	repository

	centralisé

	liberasys

[image:]

Après une demi journée passée à lire de la documentation sur git, je partage la synthèse.

Mon besoin est de créer un repository central et de travailler à la manière de SVN.

Remarque : GIT est à la base conçu pour travailler de manière décentralisée.

Pour ma société Liberasys, je voulais quelque chose de simple, efficace. Le mode de fonctionnement SVN correspond à ce que je veux.

Les notes sont en anglais, désolé pour les non anglophones.

from : https://git-scm.com/docs/gitcore-tutorial

Directories
.git/objects/ : real repository data (identified by SHA-1)
.git/refs/ : references to objects (heads of development, revision tags)

Remarquable files
.git/HEAD : Master head : points to default branch
.git/index : describes your current working tree

Objects types and content
RQ : objects are immutable
git cat-file -t 557db03de997c86a4a028e1ebd3a1ceb225be238 : gives the type of the file
git cat-file blob 557db03de997c86a4a028e1ebd3a1ceb225be238 : gives the content of the file

Diff commands and comparisons (by Jon Loeliger) :
 diff-tree
 +----+
 | |
 | |
 V V
 +-----------+
 | Object DB |
 | Backing |
 | Store |
 +-----------+
 ^ ^
 | |
 | | diff-index --cached
 | |
diff-index | V
 | +-----------+
 | | Index |
 | | "cache" |
 | +-----------+
 | ^
 | |
 | | diff-files
 | |
 V V
 +-----------+
 | Working |
 | Directory |
 +-----------+

Configure information about git user
git config --global user.email "user@domain"
git config --global user.name "firstname lastname"

Initialise git repository
mkdir test && cd test
git init

Populating repository
echo "Hello World" >hello
Index (cache)
echo "Silly example" >example
git update-index --add hello example

Get diff-files : difference between current working directory and index file
git diff-files : raw summary
git diff : readable differences (= git diff-files -p)

Get diff-index
git diff HEAD (= git diff-index -p HEAD) : differences between a commited tree and the working directory
git diff-index --cached -p HEAD : compares a tree and the index cache content

Create a tree
git write-tree : Raw way to create a tree

Create initial master tree (new commited tree, related to nothing else : the master tree)
tree=$(git write-tree)
commit=$(echo 'Initial commit' | git commit-tree $tree)
git update-ref HEAD $commit

Making a change
Process : working tree -> index file -> commited tree
git rm <file> : remove files from index (=git update-index --remove <file>)
git add <file : add files to index (= git update-index --add <file>)
git update-index hello example : updates index of files
git diff : show differences with index
git diff HEAD : show the differences with a tree (HEAD pointer tree)
git commit : store a change in the repository, give a commit message !
 : all lines beginning with # will be ignored

Get diff-tree : difference between two trees
git diff-tree -p HEAD : difference between the commited tree and the master tree
git diff-tree -p HEAD --pretty : idem, with metadata of commits

Tags
git tag my-first-tag : light tag (branch put in the .git/refs/tags/ diretory rather than .git/logs/refs/heads)
git diff my-first-tag : diff between the tag and the working directory
git tag -s my-major-tag : real git object, will sign current HEAD
git tag <tagname> <mybranch> : tag from a branch

Branches
git checkout -b <mybranch> : creates a branch (pointer into the Git object database in .git/refs/heads/)
git checkout -b <mybranch> <earlier-commit> : creates a branch from an earlyer commit (tag or branch)
git branch : displays the current branch

Copy locally a repository
cp -a repo-src repo-dst
cd repo-dst
git reset # does :
 git read-tree --reset HEAD # total index rebuild
 git update-index --refresh # makes sure to match up all index entries with the checked-out files

Copy remotely a repository
git clone git://git.kernel.org/pub/scm/git/git.git/ my-git
cd my-git
git checkout

Switch between tags and branches
git checkout <name> : name can be a branch or a tag

=== Git, SVN way (with user groups) / server
install git-core and git packages
adduser git
mkdir /pub
mkdir /pub/my-repo.git
chown -R git:git /pub/my-repo.git
su - git
cd /pub/my-repo.git
git --bare init --shared
gives SSH accces to this directory from the users
remark : you can use git-shell in order to limit system exposure
as root:
USERNAME="myuser"
KEYSDIR="/data/keys"
adduser --shell /usr/bin/git-shell --ingroup git --disabled-password ${USERNAME}
mkdir -p ${KEYSDIR}/${USERNAME}
cd ${KEYSDIR}/${USERNAME}
ssh-keygen -t rsa -b 4096 -f ${USERNAME}_rsa_4096 -P ""
mkdir /home/${USERNAME}/.ssh
cp ${USERNAME}_rsa_4096.pub /home/${USERNAME}/.ssh/authorized_keys
chmod 700 /home/${USERNAME}/.ssh
chmod 600 /home/${USERNAME}/.ssh/authorized_keys
chown -R ${USERNAME}:git /home/${USERNAME}/.ssh
now send the ${USERNAME}_rsa_4096 file to your new user
ask him to put a passphrase to the key with :
ssh-keygen -f <keyfile> -p
ask him to put the file in ~/.ssh/git_<original key file name>

=== Git, SVN way (with user groups) / user
if not already done for the user :
git config --global user.email "user@domain"
git config --global user.name "firstname lastname"
1) === initial clone
export GIT_SSH_COMMAND='ssh -i <private_key_file>'
git clone foo.com:/pub/my-repo.git
cd my-repo
remark : either do the export each time you use a new shell, either configure the .ssh/config file
2) TO DO ONLY ONE TIME : create master tree and HEAD link
tree=$(git write-tree)
commit=$(echo 'Initial commit' | git commit-tree $tree)
git update-ref HEAD $commit
git push origin master
3) === make local changes then commit them locally
do not forget git add/rm/mv
git diff
git diff -p HEAD
git commit
or :
git commit -a
4) === fetch changes from remote repository (merge them with local repository - always commit before)
git pull origin
5) === push the commits to the remote repository
git push origin master
then iterate to 3)

Je ne sais pas si le mode de fonctionnement proposé est "carré". Je compte sur les commentaires acerbes des lecteurs :-)

En tout cas cela fonctionne avec mes tests initiaux. J'espère que cela motivera certains à essayer voir à utiliser git au quotidien ?

Par ailleurs, quand je voudrai libérer des sources, je me demande si un téléversement d'un repository sera possible et aisé vers github ou gitlab (avec reprise des versions et métadonnées) ?

PS : la clef SSH initiale générée pour un utilisateur est non chiffrée. il faut donc la transmettre de manière sécurisée.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars235070000avatar.jpg

