

Journal SàT: un client jabber (et oui, encore !)

Posté par Goffi (site web personnel, Mastodon) le 18 mai 2009 à 01:48.

Étiquettes :

	sàt

[image:]

	
Salut à tous,

ce petit journal pour vous annoncer que je viens de publier la première version de SàT, un client jabber sur lequel je travaille par à-coups depuis quelques mois.

Bon je vous dis tout de suite: c'est une ébauche, c'est moche, ça marche mal, ça respecte même pas complètement le protocole, c'est Q&D, malpas architecturé, bref c'est une preuve de concept.

Oui je sais aussi, y'a déjà trop de clients, j'aurais pu contribuer sur un autre, etc.

Bon bref les raisons sont simples:

	 la plus importante: j'avais envie

	 je n'ai pas vu de client avec l'architecture que je voulais

	 je voulais un projet de moyenne envergure pour me perfectionner à Python et pour apprendre Twisted

	 je voulais une brique pour d'autres projets que j'ai en tête.

Ça se présente sous forme d'un démon et de plusieurs frontends, communicant par DBus. En effet, je voulais un client capable de rester connecté même en fermant X, et indépendant de la vue.

J'essaye de créer une certaine abstraction du côté démon: c'est lui qui gère les demandes de confirmation, les barres de progression, etc. Les frontends ne fond qu'afficher et transmettre les activités de l'utilisateur.

Pour l'instant il y a les frontends suivant:

	 wix (WX widgets): client classique

	 sortilege (ncurses): client sobre, laissant le maximum de surface pour la communication

	 jp (ligne de commande): outil de geek par excellence, j'en avais marre de parcourir des boites de dialogues pour envoyer ou recevoir un simple fichier.

et sont envisagés à moyen terme un frontend KDE 4 et un frontend Web (Ajax).

Il y a une bibliothèque censée permettre la création d'un nouveau frontend classique très rapidement (très mal architecturée pour le moment).

L'architecture permet de combler les lacunes d'un frontend par un autre: on peut imaginer des widgets qui gèrent chacun une partie d'un client. Ainsi sous KDE, on pourrait avoir un plasmoid qui se contente uniquement de gérer la roster list, un autre qui afficherait les conversations, les barres de progressions partiraient dans le gestionnaire de KDE.

Autre intérêt: un script peut se faire très facilement, un simple appel dbus peut lancer toute une série d'actions. Ainsi un script peut envoyer un fichier sans avoir à se soucier de gérer la connexion ou les barres de progression par exemple.

Les XEP sont implémentés sous forme de plugins. Permettant de sélectionner ceux qui nous intéressent, et a priori de les coder rapidement. Le projet se veut aussi un terrain de jeu pour essayer des protocoles expérimentaux.

J'ai décidé de le publier maintenant alors que le code est très moche et que le projet est inutilisable pour un usage quotidien pour suivre le célèbre "publish early, publish often".

D'autre part l'architecture a suivi étroitement le sens du vent et la position des étoiles; il est peu être temps de se poser un peu pour organiser ça mieux, et éventuellement avoir des avis externes.

Je publie ce journal pour avoir vos commentaires, voire vos attente.

Aussi si vous avez des envies, des idées de killer features, n'hésitez pas à en parler.

L'archive se trouve sur mon site: http://www.goffi.org

Ah, et c'est sous GPL V3, bien que j'ai hésité à mettre une licence plus permissive.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

