

Journal Gestion des erreurs d’allocation mémoire en C

Posté par gouttegd le 26 octobre 2016 à 18:31.
Licence CC By‑SA.

Étiquettes :

	firefox

[image:]

Sommaire

	Gérer gracieusement l’erreur

	Avorter en cas d’erreur

	Le cas des bibliothèques

	Et vous ?

Chaque fois que je commence un nouveau projet en C, je me pose toujours la même question : que faire en cas d’échec d’allocation de mémoire ?

C’est une question qu’on ne se pose pas dans la plupart des autres langages plus récents, où l’allocation de mémoire est généralement une opération cachée loin de la vue du programmeur. Mais en C, la question se pose chaque fois que l’on doit appeler malloc() ou toute autre fonction allouant de la mémoire : que faire si malloc() renvoie NULL ?

Gérer gracieusement l’erreur

La première possibilité est de tenter de « gérer » l’erreur. On teste le pointeur renvoyé par la fonction d’allocation et on adopte un comportement approprié en cas d’erreur (par exemple, arrêter le traitement en cours et revenir à la boucle principale du programme — ce que recommandent les GNU Coding Standards, pour les programmes interactifs).

Cette approche, idéale sur le papier et conforme aux « bonnes pratiques » (toujours tester la valeur de retour d’une fonction !), n’est malheureusement pas sans problèmes.

D’abord, elle complexifie considérablement le code, la moindre allocation de mémoire donnant lieu à un embranchement et à la nécessité de faire remonter l’erreur au code appelant jusqu’à un niveau capable de prendre la bonne décision (mais on pourrait en dire autant de la gestion des erreurs en général en C, ce n’est pas particulièrement propre aux erreurs d’allocation mémoire).

(Qui a dit « bah, il suffit de lancer une exception et de la rattraper au bon endroit ? » Veuillez faire sortir le programmeur Java, merci.)

Dans certains cas, il est possible de se rendre la tâche un peu plus facile en repensant le code. Par exemple, on peut tenter d’allouer d’un coup toute la mémoire nécessaire avant d’effectuer une opération et annuler proprement ladite opération si l’allocation échoue. Si l’allocation réussit, on n’a plus à se soucier du risque de manque de mémoire pendant toute la durée de l’opération. Cela implique toutefois de pouvoir calculer préalablement la quantité de mémoire nécessaire, ce qui n’est pas toujours possible. Par ailleurs, organiser le code autour de l’allocation de mémoire n’est pas forcément pertinent et risque de nuire à sa lisibilité.

Plus grave encore, le chemin pris en cas d’erreur n’est pratiquement jamais testé, le manque de mémoire étant une condition extrême que le développeur est très peu susceptible de rencontrer en pratique (encore moins sous GNU/Linux, où le comportement par défaut du système est de ne pas refuser la plupart des allocations quelque soit la mémoire réellement disponible, préférant compter sur l’OOM killer pour libérer de la mémoire en cas de besoin) et difficile à provoquer délibérément (à moins sans doute d’utiliser son propre allocateur, instrumentalisé pour simuler des erreurs d’allocation à la demande — beaucoup d’efforts pour tester une situation exceptionnelle). On risque donc de se retrouver avec une gestion du manque de mémoire que l’on pense « gracieuse »… et qui s’avère en réalité bancale, parce que truffée de bogues jamais mis en évidence.

Un argument parfois avancé pour justifier les efforts nécessaires à une gestion gracieuse des erreurs d’allocation est que le programme doit éviter de faire perdre à l’utilisateur son travail en cours. D’après moi, cet argument ne tient pas : si l’on tient à préserver à tout prix, à tout moment, le travail de l’utilisateur, attendre qu’une erreur survienne et tenter à ce moment‐là de sauver les meubles est une mauvaise stratégie. Enregistrer régulièrement le travail en cours (pas à la demande de l’utilisateur, mais en arrière‐plan) est une solution beaucoup plus robuste, qui permet de faire face non seulement à un soudain manque de mémoire, mais aussi à toutes sortes de situations pas forcément prévisibles ou évitables (une coupure de l’alimentation, par exemple).

Avorter en cas d’erreur

À l’opposé de la gestion gracieuse, il y a l’approche consistant à terminer immédiatement le programme à la moindre erreur d’allocation. L’idée étant que dans une situation où le système est à court de mémoire, le programme n’a de toute façon pas beaucoup de marge de manœuvre et qu’il vaut mieux tout arrêter, laisser l’utilisateur ou l’administrateur remédier au problème (en quittant Firefox, peut‐être ?) et relancer le programme après.

C’est ce que recommandent les GNU Coding Standards pour les programmes non interactifs :

If malloc() fails in a non‐interactive program, make that a fatal error.

Une façon particulièrement simple d’implémenter cette approche est… de ne rien faire, c’est‐à‐dire de ne pas vérifier le pointeur renvoyé par les fonctions d’allocation. On laissera simplement le programme faire un segfault tout seul lors du déréférencement d’un pointeur nul. J’appellerai ça la méthode « YOLO ».

Jens Gustedt suggère une petite variante qui consiste à appeler malloc() ainsi :

memset(malloc(size), 0, 1);

On écrit ici immédiatement 0 au début du bloc alloué, de manière à provoquer tout de suite l’erreur de segmentation si jamais l’allocation a échoué.

Une autre façon classique d’implémenter l’avortement sur erreur est la méthode du « wrapper qui tue ». On enveloppe les fonctions d’allocation dans des wrappers qui se chargent de quitter proprement le programme en cas d’erreur (via exit(3), si l’on veut que les éventuelles fonctions de nettoyage mises en place par atexit(3) soient appelées, ou plus violemment via abort(3)). Les wrappers eux‐mêmes peuvent ensuite être appelés en mode « YOLO », sans vérifier le pointeur retourné — le simple fait que le wrapper retourne indique déjà que l’allocation s’est bien passée.

Voici le wrapper typique que j’utilise généralement dans mes programmes :

void *
xmalloc(size_t s)
{
 void *p;

 if (! (p = malloc(s)) && s)
 err(EXIT_FAILURE, "Cannot allocate %lu bytes", s);

 return p;
}

Ici, en cas d’erreur le wrapper affiche la quantité qu’il a tenté d’allouer (ça peut être utile à l’utilisateur pour évaluer la gravité de la situation), puis termine. La fonction err(3) n’est pas standard, mais elle est assez répandue et peut trivialement être réécrite sur une plate‐forme qui ne la fournit pas.

On peut aussi imaginer des wrappers plus complexes, comme ceux utilisés par Git, qui en cas d’erreur tentent de libérer un peu de mémoire avant de retenter une allocation, après quoi seulement ils terminent le programme.

Le cas des bibliothèques

Selon les bibliothèques que vous utilisez dans votre programme, une décision a peut‐être déjà été prise pour vous. En effet, si certaines bibliothèques remontent les erreurs d’allocation au code appelant et vous laissent ainsi la possibilité de décider comment vous voulez réagir, d’autres ont déjà fait le choix d’avorter en cas d’erreur. Si ne serait‐ce qu’une seule des bibliothèques dont dépend votre programme a adopté cette approche, il ne sert plus à grand’chose de choisir la gestion gracieuse dans le reste de votre programme.

C’est ainsi, par exemple, que j’ai renoncé à gérer gracieusement les erreurs d’allocation dans Gfsecret, lorsque j’ai commencé à utiliser GIO pour accéder aux périphériques de stockage USB, parce que cette bibliothèque (comme, a priori, toutes les bibliothèques gravitant autour de GLib) termine abruptement le programme en cas d’erreur d’allocation.

Et vous ?

Les vieux barbus programmeurs C dans l’assistance sont invités à partager leur expérience et leur point de vue sur cette question.

Des commentaires sur les usages courants avec les autres langages sont aussi les bienvenus (par exemple, en C++ : new ou new(std::nothrow) ?), mais on évitera si possible le « moi, j’utilise un vrai langage moderne qui ne m’oblige pas à m’occuper de ces menus détails » — sauf le vendredi.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

