

Journal Gfsecret, le secret réparti en pratique

Posté par gouttegd le 04 septembre 2016 à 20:03.
Licence CC By‑SA.

Étiquettes :

	cryptographie

	chiffrement

	framasoft

[image:]

Sommaire

	Un peu de théorie : le partage de secret d’Adi Shamir

	
Gfsecret, une mise en pratique
	Partage

	Reconstitution

	Talk is cheap. Show me the code.

Jour’Nal,

Dans un précédent journal sur la gestion des clefs OpenPGP, je mentionnais en passant la possibilité « d’utiliser une méthode de secret réparti pour partager la clef privée en m fragments, dont n sont nécessaires pour reconstituer la clef complète ».

J’aimerais revenir sur cette méthode pour présenter les outils que j’ai développé pour la mettre en œuvre.

Un peu de théorie : le partage de secret d’Adi Shamir

Il existe plusieurs méthodes de partage de secret, celle qui nous intéresse ici est celle décrite par Adi Shamir en 1979.

Cette méthode est basée sur l’idée que n points sont nécessaires pour définir de manière unique une courbe correspondant à un polynôme de degré n−1.

Par exemple, imaginons que l’on veuille partager une valeur secrète de telle sorte que deux fragments au moins seront nécessaires pour la reconstituer (n = 2). Nous traçons une droite de la forme f(x) = ax + b, où a est une valeur choisie aléatoirement, et b (l’ordonnée à l’origine, c’est-à-dire là où la droite coupe l’axe Y) est la valeur secrète à partager. Un fragment du secret est représenté par les coordonnées d’un point sur cette droite, autrement dit un couple x, f(x).

Si vous n’avez les coordonnées que d’un seul point, vous n’avez aucun moyen de retracer la droite (puisque par ce point peuvent passer une infinité de droites, et vous ne savez pas quelle est la « bonne ») et donc de savoir à quel endroit à coupe l’axe Y.

En revanche, dès l’instant où vous connaissez (au moins) deux points, vous avez tout ce qu’il vous faut pour retracer la droite (deux points suffisent à définir une droite unique). Il est alors trivial de déduire l’ordonnée à l’origine.

Et si on veut que trois fragments soient nécessaires pour reconstituer le secret ? Le principe est le même, mais cette fois-ci, on va tracer une courbe de la forme f(x) = ax² + bx + c, avec a et b choisis aléatoirement, et c (toujours l’ordonnée à l’origine) est la valeur secrète. Maintenant, deux points ne suffisent plus à retracer la courbe, parce que par deux points passent une infinité de paraboles, il faut nécessairement trois points pour définir une parabole unique.

La méthode est aisément généralisable et on peut ainsi partager un secret de telle sorte que n fragments soient nécessaires à sa reconstruction, en utilisant un polynôme de degré n−1.

Gfsecret, une mise en pratique

(L’auto-promotion commence ici.)

Gfsecret est le projet que j’ai initié pour faciliter la mise en œuvre du partage de secret. Il est construit autour de libgfshare, une implémentation de l’algorithme d’Adi Shamir par Daniel Silverstone.

Libgfshare fournit déjà deux outils permettant de partager un secret (gfsplit) et de le reconstituer (gfcombine).

Les deux outils supplémentaires que je propose vont un tout petit peu plus loin en prenant en charge la distribution des fragments sur des supports externes amovibles. Concrètement, ils permettent d’éviter d’avoir à déplacer manuellement les fragments vers des supports amovibles (lors du partage) et à les rapatrier depuis les mêmes supports (lors de la reconstitution).

Pour illustrer son utilisation, je vais prendre le cas de ma propre clef primaire OpenPGP.

Ce qui suit n’est valable que si vous utilisez GnuPG 2.1, qui stocke chaque clef privée dans un fichier séparé. Les versions précédentes stockent toutes les clefs privées dans un fichier unique (~/.gnupg/secring.gpg), et ne permettent pas d’utiliser la méthode décrite ici pour supprimer une seule clef.

Partage

Je commence par obtenir le keygrip de ma clef primaire :

$ gpg2 --list-secret-keys --with-keygrip
/home/alice/.gnupg/pubring.kbx

sec rsa4096 2015-06-05 [SC] [expires: 2021-05-17]
 318D1F0158F237EB64797C0C5C5CE0D82EADF7D4
 Keygrip = DE389DE3BC42741B44FCB2B56D4C281B7866BA8F
uid [ultimate] Alice <alice@example.org>
ssb rsa2048 2015-08-18 [A]
 Keygrip = EFEC66DC7A6BC49CBCFA5B76398BB827B20A5689

La clef primaire a pour keygrip DE389DE3[…]7866BA8F. On peut donc la trouver dans le fichier ~/.gnupg/private-keys-v1.d/DE389DE3[…]7866BA8F.key ; c’est ce fichier que je veux partager sur plusieurs supports.

Je branche mes supports amovibles et je lance l’outil gfsec-split avec l’option -l pour obtenir une liste des supports disponibles :

$ gfsec-split -l
file:// Local filesystem
label://USBKEY GIO volume
mtp://RF2GB6X704P Samsung Galaxy A3

Gfsec-split me propose donc trois supports : le disque dur local, une clef USB avec le label USBKEY, et un smartphone Android (vu comme un périphérique MTP, ce qui à ma connaissance est le cas de tous les Android à partir de la version 4 — les versions précédentes étaient vues comme des périphériques USB mass storage, autrement dit comme des clefs USB) avec le numéro de série RF2GB6X704P.

Je relance à présent gfsec-split en lui demandant de partager la clef secrète identifiée ci-dessus en trois fragments, un pour chacun des supports disponibles :

$ gfsec-split \
 -c /home/alice/.config/gfsecret/master.conf \
 -s file:///home/alice/.local/share/gfsecret/master-key \
 -s label://DATAKEY/master-key \
 -s mtp://RF8GB1X407P/Documents/master-key \
 -n 2 \
 /home/alice/.gnupg/private-keys-v1.d/DE389DE3[…]7866BA8F.key

L’option -c indique le nom du fichier de configuration à créer. Ce fichier sera utilisé par l’outil gfsec-use pour reconstituer le secret partagé (voir plus bas). (Par défaut, gfsec-split génère un fichier de configuration dans $XDG_CONFIG_HOME/gfsecret avec le même nom que le fichier à partager, mais ce n’est pas très pratique dans le cas d’une clef GnuPG dont le nom est un keygrip de 40 caractères.)

Chaque option -s instruit gfsec-split de créer un fragment et de le stocker à l’adresse spécifiée. L’option -n donne le seuil, c’est-à-dire le nombre de fragments requis pour reconstituer le secret (notez que 2 est la valeur par défaut).

Enfin, vient le chemin vers le fichier à partager. Ce fichier est automatiquement supprimé si le partage s’est déroulé correctement (utilisez l’option -k pour ne pas supprimer le fichier quoi qu’il arrive).

On peut vérifier auprès de GnuPG que la clef primaire secrète n’est plus disponible :

$ gpg2 --list-secret-keys
/home/alice/.gnupg/pubring.kbx

sec# rsa4096 2015-06-05 [SC] [expires: 2021-05-17]
 318D1F0158F237EB64797C0C5C5CE0D82EADF7D4
uid [ultimate] Alice <alice@example.org>
ssb rsa2048 2015-08-18 [A]

(Notez le symbole # après le mot-clé sec, qui indique l’absence de la clef privée correspondante.)

Reconstitution

Passons maintenant à la reconstitution, possible avec l’outil gfsec-use. Celui-ci s’utilise avec un fichier de configuration qui décrit l’emplacement des fragments, le nombre minimal de fragments requis et le nom du fichier original à reconstituer. Un tel fichier est automatiquement généré par gfsec-split lors du partage.

Il me suffit alors d’appeler gfsec-use en lui précisant le nom du fichier de configuration à utiliser (ou le chemin complet, si le fichier est situé ailleurs que dans $XDG_CONFIG_HOME/gfsecret) :

$ gfsec-use -c master
Found share data in file:///home/alice/.local/share/gfsecret/master-key.070
gfsec-use: Cannot reconstitute the secret: Not enough shares available

Ici, la reconstitution a échoué parce que seul le fragment stocké sur le disque dur local a été trouvé. Si je connecte un des deux supports amovibles (disons la clef USB) avant de relancer la commande :

$ gfsec-use -c master
Found share data in file:///home/alice/.local/share/gfsecret/master-key.070
Found share data in label://DATAKEY/master-key.134
gfsec>

Cette fois‐ci, la reconstitution a réussi et gfsec-use me laisse dans un nouveau shell dans lequel je peux faire ce que j’ai besoin de faire avec mon secret reconstitué. Sitôt que je quitte ce shell, le fichier reconstitué est automatiquement supprimé à nouveau :

gfec> ^D
Removing secret.

Il est possible de spécifier une commande arbitraire à exécuter plutôt qu’un shell. Par exemple, si je veux reconstituer ma clef primaire le temps de signer la clef de Bob, je peux directement lancer l’éditeur de clefs de GnuPG :

$ gfsec-use -c master gpg2 --edit-key bob@example.com
Found share data in file:///home/alice/.local/share/gfsecret/master-key.070
Found share data in label://DATAKEY/master-key.134

pub rsa2048/21321A16B4902A74
 created: 2015-06-05 expires: never usage: SC
 trust: full validity: unknown
sub rsa2048/E32EF7E899E238AD
 created: 2015-06-05 expires: never usage: E
[unknown] (1). Bob du 92 <bob92@provider.example>
[unknown] (2) Robert <bob@example.com>

gpg>

La clef primaire reconstituée sera automatiquement supprimée sitôt que je quitterai l’éditeur.

Talk is cheap. Show me the code.

Le code est distribué sous licence GPL v3. Évidemment, il est fourni sans le moindre garantie — gardez ça à l’esprit, si vous voulez vous en servir sur votre porte‐feuille de bitcoins (pensez aussi à l’option -k)…

	La page du projet chez moi.

	Une copie du dépôt est aussi disponible sur Framagit, l’hébergement de code par Framasoft.

	Le tarball de la dernière version et la signature correspondante.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

