

Journal scdrand: alimenter le pool d’entropie du noyau à partir d’une carte à puce

Posté par gouttegd le 13 août 2014 à 21:45.
Licence CC By‑SA.

Étiquettes :
aucune

[image:]

Ce journal a été promu en dépêche : scdrand: alimenter le pool d’entropie du noyau à partir d’une carte à puce.

Possesseur d’une carte OpenPGP, je cherchais un moyen d’exploiter le générateur de nombres aléatoires dont elle est équipée.

Une rapide recherche m’a immédiatement emmené vers TokenTools, qui semble faire exactement ce que je voulais. Malheureusement, ce programme ne peut pas cohabiter harmonieusement avec scdaemon, le démon de GnuPG chargé d’interagir avec les cartes à puce : TokenTools ne peut pas accéder à la carte tant que scdaemon tourne — or j’ai besoin de scdaemon pour l’utilisation routinière de ma carte OpenPGP (signer, déchiffrer, m’authentifier).

Plutôt que d’envisager une alternance fastidieuse entre scdaemon et TokenTools, j’ai donc entrepris d’écrire un petit programme similaire à TokenTools, mais qui accède à la carte par l’intermédiaire de scdaemon plutôt qu’en concurrence de ce dernier.

Voici donc scdrand, un programme qui obtient quelques octets aléatoires (de 1 à 256) à partir d’une carte à puce compatible¹ et les utilise pour approvisionner le pool d’entropie du noyau (le pool qui alimente à son tour /dev/random et /dev/urandom).

L’utilisation est supposée être simple, dès l’instant où un agent GPG et scdaemon sont disponibles et en cours d’utilisation (ce qui devrait probablement être le cas si vous êtes déjà utilisateur d’une carte OpenPGP). Par exemple :

$ scdrand 64

demande 64 octets aléatoires à la carte, les fournit au noyau et se termine.

Une utilisation un peu plus poussée est la suivante :

$ scdrand -l -i 2 -t 512 256

Ici, scdrand va vérifier toutes les deux secondes s’il y a au moins 512 bits d’entropie disponible dans le pool du noyau, et dans le cas contraire, approvisionner celui-ci avec 256 octets aléatoires en provenance de la carte.

Pour visualiser l’effet de scdrand, j’ai suivi l’état du pool d’entropie du noyau (nombre de bits d’entropie disponibles, consultable dans /proc/sys/kernel/random/entropy_avail) pendant la génération d’une paire de clefs RSA par GnuPG, d’abord sans, puis avec scdrand.

[image: Effets de scdrand sur le pool d’entropie]

Comme on peut le voir sur le graphe ci-dessus, la génération d’une paire de clefs vide instantanément le pool d’entropie et le maintient à un niveau très bas tant que la paire n’est pas générée. Sans sources d’entropie supplémentaire (GnuPG conseille à ce moment-là de bouger la souris, de saisir n’importe quoi sur le clavier ou de solliciter les disques durs — ce que je n’ai pas fait pour cet exemple), cela a pris ici une quarantaine de secondes, après quoi le noyau a encore besoin d’une trentaine de secondes pour ramener le pool d’entropie au niveau basal.

La deuxième paire de clefs, générée avec scdrand tournant dans un autre terminal, vide tout aussi le pool d’entropie. Mais cette fois-ci, au bout de deux secondes le pool est réapprovisionné par scdrand. En conséquence, trois secondes suffisent à GnuPG pour générer la paire de clefs, et le pool d’entropie revient à son niveau de base en moins de vingt secondes.

Évidemment, si vous ne passez pas votre temps à créer de nouvelles clefs toutes les cinq minutes, l’intérêt de tout celà est sans doute assez limité… Mais si ça vous intéresse tout de même, le code est là :

	Dépôt Git: git://git.incenp.org/scdrand.git ou via gitweb

	tarball: scdrand-0.1.0.tar.gz

¹ La commande GET CHALLENGE permettant la génération de données aléatoires est spécifiée dans le standard ISO 7816-6 et n’est pas spécifique à l’application OpenPGP, donc scdrand devrait pouvoir utiliser d’autres types de carte. Mais je n’ai pu tester qu’avec une carte OpenPGP 2.0.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/72a730e0623c715852e51ed9eaea72b3a5cc417f48c90bcadf4e46ae.png
Available entropy

Mean - 83672 bits

Return to mean level Return to mean feve
70 3econds 17 seconds

Generaton of a
2048 bit RSA key with
Sedrand 11421 512 256

Generation of
2048 bit RSA key.

Generaton time:
Sseconds

Generation time:
A seconds

Tome Gecond)

