

Journal Haskell -- Évaluation paresseuse


Posté par Guillaum (site web personnel) le 03 mai 2016 à 12:31.
Licence CC By‑SA.

Étiquettes :

	haskell

	lazy











[image: ]



Sommaire


	Opérateur à court-circuit

	Visualisation

	Fun et brain melting


Bonjour,


Je voulais vous parler d'évaluation paresseuse, en me servant comme support du langage Haskell.


L'évaluation paresseuse c'est juste le summum de la procrastination, reporter à demain (ou jamais) ce que tu n'as pas besoin de faire aujourd'hui. En haskell, une fonction n'est évaluée que si la valeur de retour est nécessaire pour évaluer immédiatement un autre résultat.


Je ne vous parlerai pas des avantages ou inconvénient de cela, mais je vais plutôt donner des exemples que je trouve amusant.

Opérateur à court-circuit


Dans tous les langages de programmation il y a des opérateurs à court-circuit, comme le && / and. Exemple en Python :


resultat = longCalculA(argA) and longCalculB(argB)


longCalculB ne sera effectué que si longCalculA renvoie True. Dans ce cas là, le résultat de and est défini par le résultat de longCalculB. Mais si longCalculA renvoie False, alors le résultat de longCalculB n'est pas nécessaire, et il ne sera donc pas calculé.


Cet opérateur and est un cas particulier du langage Python et il est impossible de l’implémenter en Python pur. Essayons :


def myAnd(a, b):
    if a == False:
        return False
    else:
        return b

resultat = myAnd(longCalculA(argA), longCalculB(argB))


Bien que le résultat sera le même, les deux fonctions longCalculA et longCalculB seront appelées avant l'appel à myAnd, et donc une perte d'efficacité très claire.


En Haskell :


myAnd a b = if a == False
            then False
            else b

resultat = myAnd (longCalculA argA) (longCalculB argB)


Ici les calculs ne sont pas effectués tant que ce n'est pas nécessaire. Ainsi pour connaitre le resultat, il faut regarder la valeur de longCalculA (et donc effectuer le calcul), mais si celui-ci est False, alors la valeur de b importe peu et le calcul ne sera jamais effectué.

Visualisation


Pour les besoins de cet exemple j'ai crée une fonction longId qui met du temps (~ une seconde) à renvoyer la valeur passée en paramètre, j'ajoute les temps en commentaire sur chaque ligne :


*Long> print (longId 10) -- 1s
10
*Long> print (longId "Hello") -- 1s
"Hello"


On va s'amuser un peu avec, que se passe-il si on applique la fonction longId sur tous les éléments de 1 à 10 :


*Long> print (map longId [1..10]) -- 10 secondes
[1,2,3,4,5,6,7,8,9,10]


En fait, de façon amusante, les chiffres apparaissent les uns après les autres, un par seconde. En fait la fonction print consomme les éléments du résultat un par un et est capable de les afficher quand ils arrivent.


Cependant, combien de temps prend le calcul de la longueur de la liste ?


*Long> print (length (map longId [1..10])) -- instantané
10


C'est instantané, car il n'est pas nécessaire d'évaluer les cellules de la liste pour connaitre la longueur.


Autres exemples, avec la fonction elem qui teset si un élément est dans la liste :


*Long> print (elem 1 (map longId [1..10])) -- 1s
True
*Long> print (elem 5 (map longId [1..10])) -- 5s
True
*Long> print (elem 10 (map longId [1..10])) -- 10s
True


Les éléments de la liste qui ne sont pas testés ne sont pas calculés.


Nous allons pousser un peu plus grâce à l'outil :sprint du shell ghci. Celui-ci permet de voir les valeurs évaluées et celles qui ne le sont pas encore.


Nous allons partir d'une liste toute simple :


*Long> let l = map longId [1..10] :: [Int]


(Pour des raisons techniques je force le type de la liste à une liste d'entiers [Int]).


Comment est évalué l ?:


*Long> :sprint l
l = _


Ici _ signifie que ce n'est pas évalué.


Prenons maintenant les 3 premiers éléments de la liste, sans les afficher.


*Long> print (length (take 3 l)) -- instantané
3
*Long> :sprint l
l = _ : _ : _ : _


Ici on obtient une suite de cellules de liste, liées ensemble par (:). Il y a 4 éléments, les 3 premiers et la suite de la liste. Notez que les éléments ne sont pas évalués.


Nous allons commencer à en évaluer quelques-un, le premier et le dernier.


*Long> print (head l) -- 1s
1
*Long> :sprint l
l = 1 : _ : _ : _

*Long> print (last l) -- 1s
10
*Long> :sprint l
l = [1,_,_,_,_,_,_,_,_,10]
*Long>


L'évaluation du premier élément apparaît dans sprint, le _ est remplacé par 1. L'évaluation du dernier élément force l'évaluation de toutes les cellules de la liste (mais pas de leur contenu) ainsi que du contenu de la dernière cellule. Les deux évaluations n'ont prise chacune qu'une seule seconde, temps nécessaire pour évaluer la première ou dernière cellule.


Nous allons conclure :


*Long> print (sum l) -- 8 secondes
55
*Long> :sprint l
l = [1,2,3,4,5,6,7,8,9,10]


Notez que cela ne prend que 8 secondes, puisque la première et dernière cellule sont déjà évaluées.

Fun et brain melting


Nous allons nous intéresser à une fonction totalement inutile qui calcul une normalisation d'une liste de nombre en divisant les éléments de la liste par la somme des éléments de cette liste, soit :


*Main> f [1,2,3,4]
[0.1,0.2,0.3,0.4]


(ici la somme fait 10).


Une façon simple d'écrire cette fonction est la suivante :


f l = let s = sum l
      in map (/s) l


En premier lieu on calcule la somme de la liste avec s = sum l et on applique la division par s, (/s) sur chaque élément de la liste avec la fonction map.


La liste est parcourue deux fois, une fois pour faire la somme, et une fois pour faire la division de chaque élément. Ne pourrait-on pas faire cela en un seul parcours pour s'amuser ?


Pour cela nous allons introduire une nouvelle fonction g qui fait deux choses : elle calcule le résultat et elle renvoie la somme. Cependant elle prend la somme utilisée pour la division en paramètre. Exemple :


*Main> g 10 [1,2,3,4]
([0.1,0.2,0.3,0.4],10.0)
*Main> g 100 [1,2,3,4]
([1.0e-2,2.0e-2,3.0e-2,4.0e-2],10.0)


Dans le premier exemple, la somme passée est 10 et le résultat est le bon. Dans le second cas, la somme passée est 100, donc la liste de résultats a des valeurs 10 fois trop petites, mais par contre la somme retournée est bien 10.


Je laisse l'écriture de la fonction g en tant qu'exercice au lecteur, elle n'est pas importante. Écrivons maintenant f :


f l = let s = sum l
          (res, s') = g s l
      in res


Ici nous calculons la somme grâce à s = sum l, nous appelons la fonction g en lui passant la somme et la liste et nous récupérons le résultat et la somme s' calculée par g, pour enfin renvoyer le résultat let ... in res. La liste est toujours parcourue deux fois (dans sum et dans g).


Ici s et s' représentent la même valeur, la somme de la liste. On pourrait même envisager de remplacer l'un par l'autre :


f l = let s = sum l
          (res, s') = g s' l
      in res


Et ici le calcul de s ne sert plus à rien… :


f l = let (res, s') = g s' l
      in res


Alors pourquoi cela fonctionne, sachant que s' est autant un paramètre de g qu'un résultat ? La fonction g va se contenter de crée une liste qui contient :




Mais elle contient les fonctions non évaluées. Ainsi la valeur de s n'est pas nécessaire pour construire la liste. Bien que pas encore calculée, elle peut être utilisée dans des expressions à condition que son calcul ne dépende pas du résultat de ces expressions. Une fois que g se termine, la valeur de s est bien définie, et donc l'évaluation des cellules de la liste de résultat de g peut être effectuée.


Bref, moi je trouve cela marrant. Et vous ?




EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

