

Journal Python, encodage, rot13, brainfuck

Posté par Guillaum (site web personnel) le 27 octobre 2010 à 16:10.

Étiquettes :

	python

	utf8

[image:]

	
Bonjour chers amis.

Comme je n'ai pas (plus diraient certains) de blog, et que là je suis tellement

content de ce que j'ai trouvé que j'ai envi d'en informer le monde, et bien

voila, je m'adresse à toi, cher public (et non cher 'Nal).

Vous connaissez tous Python_(langage) comme étant le meilleur langage du

monde. Aussi vous devez savoir que les sources d'un bout de code python peuvent

être écrite dans n'importe quel Codage_des_caractères (genre ascii, UTF-8,

...).

Par exemple en faisant ceci :

coding: utf8

print "Ceci est du code python encodé en utf8"

Jusqu'à présent je pensais qu'il s'agissait d'un comportement en dur dans

l'interpréteur en fait il n'en est rien, c'est beaucoup plus malin que cela.

Python définit un module codecs pour gérer les

différents codages de caractères, et c'est ce module qui est appelé par

l'interpréteur pour traduire en unicode le code que l'on a écrit. Chaque

encodage différent est représenté dans

/usr/lib/pythonX.Y/encodings par un fichier name.py

contenant les fonctions d'encodage et de décodage adaptées.

Ainsi il est possible d'écrire son code source dans n'importe quel encodage

supporté dans ce répertoire. Or il y en a un que j'utilise depuis longtemps

pour protéger ma vie privé (joke inside), c'est l'encodage [[ROT13]]. Un petit exemple en mode

interactif de python :

>>> u'Hello linuxfr.org'.encode('rot13')

'Uryyb yvahkse.bet'

>>> 'Uryyb yvahkse.bet'.decode('rot13')

u'Hello linuxfr.org'

Et là la question qui m'est venue ce matin c'est "Est il possible d'écrire un

code source en rot13 ?" Essayons :

Le code original:

for i in range(5):

 print i, u"test"

La version rot13:

coding: rot13

sbe v va enatr(5):

	cevag v, h"grfg"

L'exécution :

$ python test_rot13.py

0 test

1 test

2 test

3 test

4 test

Petite remarque, si dans le code original l'on remplace u"test"

par "test", et bien cela fonctionne toujours, mais cela affiche

grfg en lieu et place de test. Cela vient d'une particularité de python. Les

chaînes commençant par u représentent une suite de caractère unicode encodés

dans le format du fichier. Ainsi lorsque python converti le code source en

unicode, il prend le contenu de la chaine, le décode avec l'encodage

spécifié, et forme ainsi une chaine unicode.

Dans le cas d'une chaine sans le préfixe u, il s'agit (en python 2), d'une

chaine d'octets purs qui doivent être insérés sans modifications dans le

programme. Ainsi cette chaine est convertie en unicode, donnant le code

"test". Mais lors de l'exécution, le parseur va lire cette chaîne

et se rappeler qu'en vrai il s'agit d'une chaine d'octets, et la reconvertir

dans l'encodage d'origine.

Comme dirait ma sainte grand-mère, Oh my god ! Bref, cette découverte m'a rendue

heureuse. Et soudain mon cerveau malade et pervers s'est demandé jusque où

cette perversion peut elle aller ?

Je regarde un peu comment ce système fonction, et globalement c'est tout simple, python commence le traitement du code source en ASCII, et dès qu'il trouve un #coding: name, il passe toute la suite du fichier à la moulinette de décodage, celle-ci devant normalement lui générer une chaine unicode correspondant à un code source python valide. Mais il n'est écrit nul part que le contenu du fichier doit être un code source python valide ! En fait n'importe quel contenu (voir même pas de contenu) est possible, si la fonction de décodage génère du code valide.

Ainsi je me suis lancé dans l'écriture d'un codec pour le [Brainfuck], langage idolé des foules. Je vous le copie paste en gros (attention, code ugly et hackish a mort, Don't do this at home kids !).

Le fichier /usr/lib/python2.6/encodings/bf.py :

import codecs

indent = 0

started = False

def bf_encode(input, errors='strict',

 filename='', mode=0666):

 return (str(input), len(input))

def bf_decode(input, errors='strict'):

 global indent, started

 if not input:

 return (u'', 0)

 content = input

 if not started:

 source = u'''

from collections import defaultdict

import sys

data_ptr = 0

memory = defaultdict(int)

 '''.split(u'\n')

 started = True

 else:

 source = []

 def add(s):

 source.append(u'\t' * indent + s)

 for char in content:

 if char == u'>':

 add(u'data_ptr += 1')

 if char == u'<':

 add(u'data_ptr -= 1')

 if char == u'+':

 add(u'memory[data_ptr] += 1')

 if char == u'-':

 add(u'memory[data_ptr] -= 1')

 if char == u'.':

 #add(u'sys.stdout.write(memory[data_ptr])')

 add(u'sys.stdout.write(chr(memory[data_ptr]))')

 if char == u',':

 add(u'memory[data_ptr] = ord(sys.stdin.read(1))')

 if char == u'[':

 add(u'while memory[data_ptr]:')

 indent += 1

 if char == u']':

 indent -= 1

 return (u'\n'.join(source) + u'\n', len(input))

class Codec(codecs.Codec):

 def encode(self, input, errors='strict'):

 return bf_encode(input, errors)

 def decode(self, input, errors='strict'):

 return bf_decode(input, errors)

class StreamWriter(Codec, codecs.StreamWriter):

 pass

class StreamReader(Codec, codecs.StreamReader):

 pass

def getregentry():

 return (bf_encode, bf_decode, StreamReader, StreamWriter)

Le fichier source à exécuter :

coding: bf

++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+.+++++++..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>.

Et son execution :

$ python test.py

Hello World!

Rendons hommage à un autre fou furieux qui à eu la même idée, mais qui s'en est

servi pour remplacer l'indentation significative de python par un système à

base d'accolades, [http://timhatch.com/projects/pybraces/]. Je me suis

largement inspiré de son code pour écrire le mien.

Pour conclure, cela ne sert à rien, c'est marrant, et on doit pouvoir écrire

des préprocesseurs pour python avec ;)

Je me suis bien marré, j'espère que vous aussi ;)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

