

Journal Separation of Concerns (SoC)

Posté par Gwen le 03 juillet 2021 à 13:09.
Licence CC By‑SA.

Étiquettes :

	java

	conception

	programmation

[image:]

Sommaire

	Introduction

	Concept

	Application du concept en informatique

	
Exemple d'application 1 : séparation des sujets
	Situation initiale

	Analyse de la situation initiale

	
Application du principe du SoC
	Classe BookService

	Classe BorrowingService

	Classe ClientService

	Conclusion

	
Exemple d'application 2 : diminuer la complexité du code
	Situation initiale

	Analyse de la situation initiale

	Application du principe du SoC

	Conclusion

	
Exemple d'application 3 : mélange fonctionnel et technique
	Situation initiale

	Analyse de la situation initiale

	Application du principe du SoC

	Conclusion

	
Exemple d'application 4 : Séparation de couches
	Situation initiale

	Analyse de la situation initiale

	
Application du principe du SoC
	La couche métier

	La couche REST

	Conclusion

	
Exemple d'application 5 : No silver bullet
	Le résultat de l'application du principe du SoC

	L'analyse du code

	Amélioration du code

	Conclusion

	So and what else ?

	Quelques liens

Introduction

Lors d'un cours ou d'une formation, l'enseignant formateur présente les principaux concepts du développement logiciel. Ces concepts très utiles sont souvent abordés brièvement, et il est donc difficile de les appréhender complètement. Alors on se promet d'y revenir plus tard lorsque l'on aura un peu plus d'expérience. Et puis on oublie…

Cet article se veut un petit retour sur un de ces concepts : "Separation of concerns" ou "séparation des responsabilités". Pour cela, il est nécessaire de présenter d'abord le concept et sa déclinaison dans l'informatique. Comme l'article porte sur la programmation, des exemples d'application du concept sur du code seront détaillés.

Concept

Le concept de Separation of Concerns ou SoC a été décrit par E.W. Dijkstra dans l'article On the role of scientific thought(L1) publié en 1974 et dont voici l'extrait sur le sujet :

Let me try to explain to you, what to my taste is characteristic for all intelligent thinking. It is, that one is

willing to study in depth an aspect of one's subject matter in isolation for the sake of its own consistency, all

the time knowing that one is occupying oneself only with one of the aspects. We know that a program must be correct

and we can study it from that viewpoint only; we also know that it should be efficient and we can study its

efficiency on another day, so to speak. In another mood we may ask ourselves whether, and if so: why, the program

is desirable. But nothing is gained —on the contrary!— by tackling these various aspects simultaneously. It is what

I sometimes have called "the separation of concerns", which, even if not perfectly possible, is yet the only

available technique for effective ordering of one's thoughts, that I know of. This is what I mean by "focusing one's

attention upon some aspect": it does not mean ignoring the other aspects, it is just doing justice to the fact that

from this aspect's point of view, the other is irrelevant. It is being one- and multiple-track minded simultaneously.

En développement logiciel, la séparation des responsabilités vise à découper un programme en un ensemble de sous-programmes où chaque sous-programme a la responsabilité de traiter un aspect du programme. Il en est de même pour chaque sous-programme qui est divisé en composants et ainsi de suite.

D'un premier abord, cette découpe paraît simple, cependant la vraie difficulté de tout cela réside dans la façon de découper. En effet, il faut attribuer à chaque composant d'un niveau une responsabilité claire, et à chaque composant de niveau inférieur, il faut donner un morceau de la responsabilité supérieure tout en s'assurant que toutes ces responsabilités de niveau inférieur sont cohérentes entre elles. Et ainsi de suite à chaque niveau.

[image: Titre de l'image]

Il faut que chaque composant de la construction ait une responsabilité claire, cohérente et sans duplication avec les autres. Il s'agit là d'une tâche ardue.

Application du concept en informatique

En langage Java, la subdivision des composants est la suivante :

	application

	module (ie le concept introduit dans Java 9)

	package

	class

	method

Cela signifie qu'une application est composée d'un ou plusieurs module, que chaque module est composé d'un ou plus package, que chaque package est composé d'une ou plusieurs class, que chaque class est composée d'une ou plusieurs method.

Bien entendu, cette division est déclinable à différentes échelles. Ainsi pour un système logiciel simplifié, cette division est :

	système

	sous-système

	application

	etc

Les exemples des chapitres suivants présentent des cas concrets de code ne respectant pas le principe de la séparation des responsabilités, une analyse des problèmes qui en découlent et une proposition de résolution de ces problèmes à l'aide de l'application du principe.

Il est important de conserver en mémoire les points suivants à propos des exemples :

	leur taille est restreinte afin de limiter la longueur de l'article.

	les interfaces/classes utilisées comme dépendances (ie fournisseur de service) sont supposées externes au projet (API) et donc non modifiables

	les types de bases sont fortement typés afin de clarifier au maximum le code

	les commentaires ont été supprimés dans les exemples pour en réduire leur longueur

Exemple d'application 1 : séparation des sujets

Cet exemple illustre l'application du concept pour distinguer les sujets traités en un ensemble de composants traitant chacun un seul et unique sujet.

Le code de cet exemple est basé sur un service de gestion de bibliothèque. Ce service est représenté par l'interface LibraryService contenant un ensemble de méthodes de gestion d'une bibliothèque.

Situation initiale

Dans la situation initiale, l'ensemble des méthodes est placé dans la même interface. Ce cas peut se produire lors de la définition trop rapide d'un service, ou suite à de nombreuses évolutions incontrôlées du service.

Ce service contient toutes les méthodes possibles pour gérer la bibliothèque :

	Inscrire un nouvel adhérent

	Emprunter un livre

	Ramener un livre

	Obtenir la liste des livres

	Obtenir la liste des adhérents

	etc.

public interface LibraryService {

 Set<Book> getAllBooks();

 void registerClient(Client client) throws ClientAlreadyRegisteredException;

 void borrowBook(Book book) throws UnknownBookException, BookAlreadyBorrowedException;

 Set<Client> getClientsWithBorrowedBooks();

 void registerBook(Book book) throws BookAlreadyRegisteredException;

 boolean isBookRegistered(Book book);

 void returnBook(Book book) throws UnknownBookException, BookAlreadyReturnedException;

 boolean isClientRegistered(Client client);

 void unregisterClient(Client client) throws UnknownClientException;

 void unregisterBook(Book book) throws UnknownBookException;

 boolean isBookBorrowed(Book book);

 Set<Book> getBooksBorrowedByClient(Client client) throws UnknownClientException;

 Set<Book> getAvailableBooks();

 Set<Client> getAllClients();
}

Analyse de la situation initiale

Une première observation rapide permet de constater que ce service est constitué de près d'une quinzaine de méthodes. Ce qui en fait un service plutôt étoffé, et son implémentation doit être volumineuse, voire complexe.

Une observation plus détaillée du service permet de constater que les méthodes portent sur des entités différentes (livres, clients, emprunts) et portent sur des tâches métier différentes (récupération, enregistrement, vérification, etc.).

Cela implique que l'implémentation sera complexe à écrire et à lire, car chaque méthode pourra avoir un contexte très différent de la suivante.

De plus, la réutilisabilité du service sera fortement limitée car il faudra reprendre l'ensemble des méthodes. Par exemple, si l'on souhaite réutiliser cette interface pour gérer simplement une collection de livres, cela impliquera soit d'y incorporer le concept de client et d'emprunt, soit de neutraliser l'usage de ces méthodes (par exemple en levant une exception java.lang.UnsupportedOperationException).

Bref, cette version du service fonctionne mais elle ne sera pas très aisée à utiliser, ni à implémenter. Par voie de conséquence, elle est plus difficile à maintenir et à faire évoluer.

Application du principe du SoC

En appliquant le principe du Separation of Concerns, il est possible d'améliorer la situation. Cette interface contient trois notions métiers : le livre, le client et l'emprunt. Ainsi il est possible de diviser le service LibraryService en trois services :

	
BookService : un service de gestion des livres

	
ClientService : un service de gestion des adhérents

	
BorrowingService : un service de gestion des emprunts

Classe BookService

Cette interface regroupe les méthodes liées à la gestion des livres au niveau global de la bibliothèque.

public interface BookService {

 Set<Book> getAllBooks();

 void registerBook(Book book) throws BookAlreadyRegisteredException;

 boolean isBookRegistered(Book book);

 void unregisterBook(Book book) throws UnknownBookException;

}

Classe BorrowingService

Cette interface regroupe les méthodes liées à la gestion de l'emprunt et du retour des livres

public interface BorrowingService {

 Set<Book> getAvailableBooks();

 void borrowBook(Book book) throws UnknownBookException, BookAlreadyBorrowedException;

 Set<Client> getClientsWithBorrowedBooks();

 void returnBook(Book book) throws UnknownBookException, BookAlreadyReturnedException;

 boolean isBookBorrowed(Book book);

 Set<Book> getBooksBorrowedByClient(Client client) throws UnknownClientException;
}

Classe ClientService

Cette interface regroupe les méthodes liées à la gestion des adhérents.

public interface ClientService {

 void registerClient(Client client) throws ClientAlreadyRegisteredException;

 boolean isClientRegistered(Client client);

 void unregisterClient(Client client) throws UnknownClientException;

 Set<Client> getAllClients();
}

Conclusion

Suite au refactoring, chacun des services est dédié à un seul et unique sujet, et contient toutes les opérations qui lui sont relatives. Ainsi BookService regroupe toutes les opérations liées aux livres : ajout, suppression, liste, etc. Il en est de même pour ClientService qui est un service dédié à la gestion des adhérents. Le service BorrowingService est dédié à la gestion des emprunts, c'est-à-dire sur les relations entre un adhérent et un livre.

Chaque interface porte sur un périmètre clair et restreint. L'usage, l'implémentation et la maintenance de chacune en sont facilités.

Exemple d'application 2 : diminuer la complexité du code

Le principe de séparation des responsabilités peut s'appliquer à l'implémentation d'une méthode pour la rendre plus lisible. Il s'agit de faire en sorte que chaque ligne de code de la méthode fasse une seule et unique chose. Pour cela il existe plusieurs stratégies, dont les plus usitées sont :

	créer une méthode regroupant le code portant sur le même sujet

	nommer des variables avec un nom explicite

	faciliter la réutilisation en créant des méthodes qui font une action précise clairement décrite par leur nom.

Situation initiale

La classe BorrowingService contient une méthode isMaximumBookBorrowed qui indique que le nombre de livres, empruntés par le client, est au maximum.

Voici la première implémentation :

public class BorrowingService {

 private static final int MAX_BORROWED_BOOK_COUNT = 5;
 private ClientService clientService;
 private final Map<Client, Set<Book>> borrowedBookMap = new HashMap<>();

 public boolean isMaximumBookBorrowed(Client client) {
 notNull(client, "client argument shall not be null");

 if (!clientService.isRegisteredClient(client))
 throw new UnknownClientException("Client " + client + " is not registered in the library");

 Set<Book> borrowedBookSet = borrowedBookMap.getOrDefault(client, Collections.emptySet());
 int borrowedBookCount = borrowedBookSet.size();
 return borrowedBookCount >= MAX_BORROWED_BOOK_COUNT;
 }
}

Analyse de la situation initiale

Le code est relativement lisible mais il est nécessaire de le lire avec attention pour en deviner les différentes étapes :

	La vérification du client

	la non nullité du paramètre client

	l'enregistrement effectif du client à la bibliothèque

	L'obtention du nombre d'ouvrages empruntés par le client

	L'obtention de la liste des ouvrages empruntés par le client

	Le comptage de ces ouvrages

	La comparaison du nombre d'ouvrages empruntés par le client avec le nombre maximum d'ouvrages empruntables.

Cette méthode est correctement codée, pas trop longue et passe sans soucis les outils de qualimétrie automatique.

Cependant la lisibilité n'est pas optimale et peut amener à des erreurs lors de sa modification. C'est là que le principe de SoC peut aider.

Application du principe du SoC

L'application du SoC dans cet exemple vise à découper cette méthode en plusieurs méthodes, chacune portant une responsabilité distincte des autres.

Comme noté dans l'analyse de la section précédente, il y a 3 notions essentielles :

	la vérification du client

	l'obtention du nombre d'ouvrages empruntés par le client

	La comparaison du nombre d'ouvrages empruntés par le client avec le nombre maximum d'ouvrages empruntables

Le refactoring consiste à disposer d'une méthode par notion :

	la méthode isMaximumBookBorrowed(Client) est la méthode analysée, son périmètre n'évolue pas, seule son implémentation change.

	la méthode verifyClientRegistered(Client) est en charge de la vérification du client. Elle vérifie 2 choses :

	que l'argument client n'est pas null,

	que le client est enregistré auprès de la bibliothèque.

	la méthode getBorrowedBookCount(Client) fournit le nombre de livres empruntés par le client.

public class BorrowingService2 {

 private static final int MAX_BORROWED_BOOK_COUNT = 5;
 private ClientService clientService;
 private final Map<Client, Set<Book>> borrowedBookMap = new HashMap<>();

 public boolean isMaximumBookBorrowed(Client client) {
 verifyClientRegistered(client);
 return getBorrowedBookCount(client) >= MAX_BORROWED_BOOK_COUNT;
 }

 private void verifyClientRegistered(Client client) {
 notNull(client, "client argument shall not be null");
 if (!clientService.isRegisteredClient(client))
 throw new UnknownClientException("Client " + client + " is not registered in the library");
 }

 private int getBorrowedBookCount(Client client) {
 Set<Book> borrowedBookSet = borrowedBookMap.getOrDefault(client, Collections.emptySet());
 return borrowedBookSet.size();
 }
}

Conclusion

L'application du principe SoC a permis de faire ressortir la logique du code dans cet exemple et d'identifier les sujets traités dans la méthode.

La nouvelle version du code contient 3 méthodes au lieu d'une seule. Les 2 méthodes supplémentaires sont concises, claires et portent sur une seule action. Outre le fait d'obtenir une méthode plus claire, ce refactoring permet d'avoir deux nouvelles méthodes réutilisables. Il faut souligner que les méthodes ajoutées sont internes à l'implémentation et n'impactent pas l'interface.

L'usage, l'implémentation et la maintenance de ce code sont facilités.

Exemple d'application 3 : mélange fonctionnel et technique

Le principe de la séparation des responsabilités s'applique également sur le découpage du code pour distinguer le code fonctionnel du code technique:

	Le code fonctionnel est du code qui décrit le métier de l'application, en ne manipulant que des objets métiers.
Ainsi il doit être compréhensible par un utilisateur.

	En revanche, le code technique utilise des objets et des API de bas niveau.

Situation initiale

La méthode borrowBook(Book,Client) permet à un client d'emprunter un livre de la bibliothèque. Voici les principales étapes qui la composent :

	vérifier que le livre existe dans la bibliothèque et n'a pas été déjà emprunté.

	vérifier que le client est enregistré auprès de la bibliothèque

	enregistrer que le livre a été emprunté par le client

public class LibraryService {

 private final Set<Book> bookSet = new HashSet<>();
 private final Set<Client> clientSet = new HashSet<>();
 private final Map<Client, Set<Book>> borrowedBookMap = new HashMap<>();

 public void borrowBook(Book book, Client client) throws UnknownBookException, UnknownClientException, BookAlreadyBorrowedException {
 notNull(book, "book argument shall not be null");
 notNull(client, "client argument shall not be null");

 if (!clientSet.contains(client))
 throw new UnknownClientException("Client " + client + " is not registered in the library");

 if (!bookSet.contains(book))
 throw new UnknownBookException("Book " + book + " is not registered in the library");

 if (borrowedBookMap.containsKey(client) && borrowedBookMap.get(client).contains(book))
 return;

 boolean bookBorrowed = borrowedBookMap.values().stream()
 .flatMap(Collection::stream)
 .anyMatch(it -> it.equals(book));
 if (bookBorrowed)
 throw new BookAlreadyBorrowedException("Book " + book + " has already been registered");

 if (!borrowedBookMap.containsKey(client))
 borrowedBookMap.put(client, new HashSet<>());

 Set<Book> borrowedBookSet = borrowedBookMap.get(client);
 borrowedBookSet.add(book);
 }

}

Analyse de la situation initiale

L'implémentation initiale est correctement codée, de taille moyenne et passe les outils de qualimétrie automatique. Cette implémentation, bien que s'exécutant parfaitement, est peu lisible et mélange du code fonctionnel avec du code technique. Par exemple l'usage de l'API stream en plein milieu casse complètement la lecture. Déterminer le processus fonctionnel contenu dans la méthode est difficile et demande une bonne concentration. En résumé, la compréhension et la maintenabilité de ce morceau de code sont médiocres.

Application du principe du SoC

L'application du Separation of Concern consiste à faire apparaitre clairement le code fonctionnel dans la fonction et à déléguer les parties techniques dans d'autres fonctions.

D'un point de vue fonctionnel, le contenu de la méthode est:

	vérifier que l'emprunteur est client de la bibliothèque

	vérifier que le livre est enregistré dans la bibliothèque

	vérifier que le livre n'est pas déjà emprunté

	par l'emprunteur lui-même

	par un autre client de la bibliothèque

	déclarer le livre comme emprunté par l'emprunteur

D'un point de vue technique, les méthodes ajoutées sont les implémentations des méthodes utilisées dans la partie fonctionnelle. Chacune porte sur un sujet précis et indépendant des autres.

public class LibraryService2 {

 private final Set<Book> bookSet = new HashSet<>();
 private final Set<Client> clientSet = new HashSet<>();
 private final Map<Client, Set<Book>> borrowedBookMap = new HashMap<>();

 public void borrowBook(Book book, Client client) {
 verifyRegisteredClient(client);
 verifyRegisteredBook(book);

 if (isBookBorrowedByClient(book, client))
 return;

 verifyBookNotBorrowed(book);

 addBookToClient(book, client);
 }

 private void verifyRegisteredClient(Client client) {
 notNull(client, "client argument shall not be null");
 if (!clientSet.contains(client))
 throw new UnknownClientException("Client " + client + " is not registered in the library");
 }

 private void verifyRegisteredBook(Book book) {
 notNull(book, "book argument shall not be null");
 if (!bookSet.contains(book))
 throw new UnknownBookException("Book " + book + " is not registered in the library");
 }

 private boolean isBookBorrowedByClient(Book book, Client client) {
 Set<Book> borrowedBookSet = borrowedBookMap.getOrDefault(client, Collections.emptySet());
 return borrowedBookSet.contains(book);
 }

 private void verifyBookNotBorrowed(Book book) {
 if (isBorrowedBook(book))
 throw new BookAlreadyBorrowedException("Book " + book + " has already been registered");
 }

 private boolean isBorrowedBook(Book book) {
 return borrowedBookMap.values().stream()
 .flatMap(Collection::stream)
 .anyMatch(it -> it.equals(book));
 }

 private void addBookToClient(Book book,Client client) {
 Set<Book> borrowedBookSet = getBooksBorrowedByClient(client);
 borrowedBookSet.add(book);
 }

 private Set<Book> getBooksBorrowedByClient(Client client) {
 if (!borrowedBookMap.containsKey(client))
 borrowedBookMap.put(client, new HashSet<>());

 return borrowedBookMap.get(client);
 }
}

Conclusion

La nouvelle version contient 8 méthodes au lieu d'une seule dans la version initiale. Ces nouvelles méthodes sont concises, claires et facilement réutilisables. La méthode fonctionnelle borrowBook est constituée uniquement de code fonctionnel et sa lisibilité est immédiate. Elle peut même être comprise par une personne qui n'est pas développeur.

Le pendant de cette simplicité du contenu de chaque méthode est la complexité croissante de l'implémentation par la multiplication du nombre de méthodes. C'est un problème inhérent au développement et est un sujet de discussion récurrent entre les développeurs : petites méthodes simples mais nombreuses contre grosses méthodes rares mais complexes.

Bien entendu, il n'y a pas de réponse tranchée à ce sujet. Le tout est une question d'équilibre en se focalisant d'abord sur la lisibilité du code. Il est impératif que chaque méthode créée possède un périmètre clair et que son nom le reflète exactement.

En d'autres termes, il faut que chacune de ces méthodes soit simple. Or, la simplicité est complexe à créer et il ne faudra pas hésiter pas à passer du temps pour concevoir ces refactorings, tant du point de vue de l'implémentation que de la dénomination des méthodes.

En bref, l'usage, l'implémentation, la réutilisation et la maintenance du code sont facilités.

Exemple d'application 4 : Séparation de couches

La séparation des responsabilités s'applique également au niveau de l'architecture. Selon sa nature, une architecture est décomposée en couches ou en composants (ex : les bases de données). Dans la suite du chapitre, afin de simplifier la lecture, il sera question uniquement du cas de l'architecture en couche, mais tous les principes présentés s'appliquent de la même façon à une architecture en composants.

Chaque couche doit avoir une responsabilité précise et il est nécessaire d'avoir le bon niveau de séparation des couches afin de favoriser la réutilisation et la maintenance.

Situation initiale

Pour illustrer cette nécessité, voici un exemple d'un service REST fournissant la liste des titres des livres disponibles dans la bibliothèque.

L'implémentation de ce service REST se fait en plusieurs temps :

	le calcul des livres disponibles à l'emprunt, le résultat est fourni au format métier

	Renvoi d'une réponse "204 Not Found" si aucun livre n'est disponible

	Conversion de la liste des livres disponibles au format technique (ie le format JSON utilisé par défaut en REST)

	Renvoi d'une réponse OK avec la liste des livres au format technique

public class LibraryRestService {

 private BookService bookService;
 private final Map<Client, Set<Book>> borrowedBookMap = new HashMap<>();

 @GetMapping("/books/available")
 public ResponseEntity<List<BookJson>> getAvailableBooks() {
 Set<Book> availableBookSet = getAvailableBookSet();
 if(availableBookSet.isEmpty())
 return ResponseEntity.noContent().build();

 List<BookJson> orderedJsonBookList = toJson(availableBookSet);
 return ResponseEntity.ok(orderedJsonBookList);
 }

 private Set<Book> getAvailableBookSet() {
 Set<Book> borrowedBookSet = borrowedBookMap.values().stream()
 .flatMap(Collection::stream)
 .collect(Collectors.toSet());
 Set<Book> availableBookSet = new HashSet<>(bookService.getAllBooks());
 availableBookSet.removeAll(borrowedBookSet);
 return availableBookSet;
 }

 private static List<BookJson> toJson(Collection<Book> availableBookSet) {
 return availableBookSet.stream()
 .map(LibraryService::toJson)
 .sorted(Comparator.comparing(BookJson::getTitle))
 .collect(Collectors.toList());
 }

 private static BookJson toJson(Book book) {
 BookJson jsonBook = new BookJson();
 jsonBook.setAuthor(book.getAuthor());
 jsonBook.setPublisher(book.getPublisher());
 jsonBook.setTitle(book.getTitle());
 return jsonBook;
 }
}

Analyse de la situation initiale

Le code est de bonne qualité, les méthodes sont concises et claires. Mais il y a tout de même un cas où le code n'est pas optimal.

Imaginons que le service de fourniture de la liste des livres doive être aussi disponible sous un autre protocole (XMPP, SOAP, …) ou sous une nouvelle version (ex: nouveau path avec contenu au format CSV ou XML ou JSON différent, etc.). Attention, il ne s'agit pas du remplacement du service existant mais de l'ajout d'un service équivalent joignable via un moyen technique différent.

Comme ce nouveau service sera dans une autre classe dédiée (Application du SoC), par exemple LibrarySoapService, il faudra dupliquer une partie du code de LibraryRestService :

	la méthode getAvailableBookSet() à dupliquer systématiquement

	les méthodes toJson à dupliquer si le format technique des données est le même.

Il est à noter que la méthode getAvailableBookSet() diffère des autres car son implémentation est purement métier, alors que les autres méthodes sont des méthodes techniques liées au protocole REST.

Bref, ce code n'est pas suffisamment réutilisable.

Application du principe du SoC

Comme vu dans l'analyse, la réutilisation n'est pas optimale pour deux raisons :

	l'insertion de code métier (getAvailableBookSet()) dans du code technique

	l'insertion de code de formatage de données dans du code de service

Le mélange de code métier et technique est résolu en déplaçant ce code dans un couple interface / classe d'implémentation.

Le mélange code de service et code de formatage est résolu par le déplacement du code de formatage dans une classe finale de type helper.

La couche métier

La couche métier, qui reprend le code de la méthode getAvailableBooks() est composée de l'interface ModelLibraryService2 et d'une classe d'implémentation ModelLibraryService2Impl

public interface ModelLibraryService2 {
 Set<Book> getAvailableBooks();
}

public class ModelLibraryService2Impl implements ModelLibraryService2 {

 private BookService bookService;
 private final Map<Client, Set<Book>> borrowedBookMap;

 @Override
 public Set<Book> getAvailableBooks() {
 Set<Book> borrowedBookSet = getBorrowedBooks();
 Set<Book> allBooks = bookService.getAllBooks();
 Set<Book> availableBookSet = new HashSet<>(allBooks);
 availableBookSet.removeAll(borrowedBookSet);
 return availableBookSet;
 }

 private Set<Book> getBorrowedBooks() {
 return borrowedBookMap.values().stream()
 .flatMap(Collection::stream)
 .collect(Collectors.toSet());
 }
}

La couche REST

La couche REST dépend de la couche métier à laquelle elle accède via l'interface ModelLibraryService2. La conversion des objets métier en REST est déportée dans la classe BookJsonHelper.

public class LibraryRestService2 {

 private ModelLibraryService2 modelLibraryService;

 @GetMapping("/books/available")
 public ResponseEntity<List<BookJson>> getAvailableBooks() {
 Set<Book> availableBookSet = modelLibraryService.getAvailableBooks();

 List<BookJson> orderedJsonBookList = BookJsonHelper.toJson(availableBookSet);

 if(orderedJsonBookList.isEmpty())
 return ResponseEntity.noContent().build();

 return ResponseEntity.ok(orderedJsonBookList);
 }
}

public final class BookJsonHelper {

 public static List<BookJson> toJson(Collection<Book> availableBookSet) {
 return availableBookSet.stream()
 .map(BookJsonHelper::toJson)
 .sorted(Comparator.comparing(BookJson::getTitle))
 .collect(Collectors.toList());
 }

 public static BookJson toJson(Book book) {
 BookJson jsonBook = new BookJson();
 jsonBook.setAuthor(book.getAuthor());
 jsonBook.setPublisher(book.getPublisher());
 jsonBook.setTitle(book.getTitle());
 return jsonBook;
 }
}

Conclusion

L'application du principe a permis une première séparation claire entre la couche REST et la couche métier. Cela permet la réutilisation de la fonctionnalité (getAvailableBooks) déplacée dans la couche métier.

La seconde séparation mise en oeuvre est la mise en commun des méthodes conversion des objets métier en objets JSON. Cela permettra de réutiliser ces méthodes dans d'autres services REST qui manipuleraient des objets identiques.

A la différence des précédents exemples, l'application du principe permet de changer de dimension en faisant évoluer l'architecture logicielle.

Exemple d'application 5 : No silver bullet

Tout concept a ses limites et Separation of concern n'échappe pas à la règle. Une application trop stricte ou dans un contexte qui ne s'y prête pas mène à la dégradation du code, entrainant des effets néfastes sur sa lisibilité, sa maintenance, et autres problèmes.

Dans ce chapitre, nous opterons pour une approche différente, à savoir faire une analyse critique d'un code refactorisé avec une approche SoC qui ne donne pas satisfaction, puis voir comment la situation peut être améliorée.

Le résultat de l'application du principe du SoC

Le code après application du principe du SoC est décrit dans la section suivante.

public class BookReceptionService2Impl implements BookReceptionService {

 private static final int WRITING_CREATION_YEAR = -7000;

 private BookRestorationService bookRestorationService;
 private BookConverter bookConverter;
 private BookService bookService;

 @Override
 public void receiveNewBook(@NotNull NewBookDTO newBook) {
 checkBookCorrectlyFilled(newBook);
 DetailedBook detailedBook = convertToDetailedBook(newBook);
 processNewBook(detailedBook);
 }

 private void checkBookCorrectlyFilled(@NotNull NewBookDTO newBook) {
 checkAuthor(newBook);
 checkTitle(newBook);
 checkPublicationHouse(newBook);
 checkPublication(newBook);
 checkFormat(newBook);
 checkPageCount(newBook);
 checkState(newBook);
 }

 private void checkAuthor(@NotNull NewBookDTO newBook) {
 if (newBook.getAuthor() == null || newBook.getAuthor().isBlank()) {
 throw new IllegalArgumentException("The author field is missing or is blank");
 }
 }

 private void checkTitle(@NotNull NewBookDTO newBook) {
 if (newBook.getTitle() == null || newBook.getTitle().isBlank()) {
 throw new IllegalArgumentException("The title field is missing or is blank");
 }
 }

 private void checkPublicationHouse(@NotNull NewBookDTO newBook) {
 if (newBook.getPublishingHouse() == null || newBook.getPublishingHouse().isBlank()) {
 throw new IllegalArgumentException("The publishingHouse field is missing or is blank");
 }
 }

 private void checkPublication(@NotNull NewBookDTO newBook) {
 checkInitialPublicationIsNotTooOld(newBook);
 checkCurrentPublicationCoherentWithInitialPublication(newBook);
 }

 private void checkInitialPublicationIsNotTooOld(@NotNull NewBookDTO newBook) {
 if (newBook.getInitialPublicationYear() < WRITING_CREATION_YEAR) {
 throw new IllegalArgumentException("The initialPublicationYear field is invalid, the writing didnt exist at this time");
 }
 }

 private void checkCurrentPublicationCoherentWithInitialPublication(@NotNull NewBookDTO newBook) {
 if (newBook.getCurrentPublicationYear() < newBook.getInitialPublicationYear()) {
 throw new IllegalArgumentException("The currentPublicationYear field shall not be lower than the initialPublicationYear");
 }
 }

 private void checkFormat(@NotNull NewBookDTO newBook) {
 checkFormatFilled(newBook);
 checkFormatHasValidValue(newBook);
 }

 private void checkFormatFilled(@NotNull NewBookDTO newBook) {
 if (newBook.getFormat() == null) {
 throw new IllegalArgumentException("The format of the book is missing");
 }
 }

 private void checkFormatHasValidValue(@NotNull NewBookDTO newBook) {
 try {
 BookFormat.valueOf(newBook.getFormat());
 } catch (Exception ex) {
 throw new IllegalArgumentException("The format is unknown");
 }
 }

 private void checkPageCount(@NotNull NewBookDTO newBook) {
 if (newBook.getPageCount() < 5) {
 throw new IllegalArgumentException("The number of pages is too low. The minimal page count is 5");
 }
 }

 private void checkState(@NotNull NewBookDTO newBook) {
 checkStateFilled(newBook);
 checkStateHasValidValue(newBook);
 }

 private void checkStateFilled(@NotNull NewBookDTO newBook) {
 if (newBook.getState() == null) {
 throw new IllegalArgumentException("The state of the book is missing");
 }
 }

 private void checkStateHasValidValue(@NotNull NewBookDTO newBook) {
 try {
 BookState.valueOf(newBook.getState());
 } catch (Exception ex) {
 throw new IllegalArgumentException("The state of the book is unknown");
 }
 }

 @NotNull
 private DetailedBook convertToDetailedBook(@NotNull NewBookDTO newBook) {
 return bookConverter.convertToDetailedBook(newBook);
 }

 private void processNewBook(DetailedBook detailedBook) {
 if (detailedBook.getState() == BookState.DAMAGED) {
 bookRestorationService.submit(detailedBook);
 } else {
 bookService.registerNewBook(detailedBook);
 }
 }
}

Long de 127 lignes, il contient 17 méthodes dont une seule est public et toutes les autres sont privées. Chaque méthode est parfaitement lisible, se concentrant sur un sujet et en plus avec une taille réduite (7 lignes au maximum). Le SoC a été appliqué et il ne semble n'y avoir rien à dire de ce côté-là.

Cependant, pris dans son ensemble, ce code n'est pas très lisible pour, principalement, deux raisons :

	la difficulté d'identifier le rôle d'une méthode au sein du processus métier.

	le (trop) grand nombre de méthodes et la disproportion de leur répartition

La difficulté d'identifier le rôle d'une méthode au sein du processus métier se mesure notamment par la profondeur de la pile d'exécution entre le méthode étudiée et la méthode publique appelée (ie qui contient le code du processus métier). Plus la pile d'exécution est profonde, moins il est aisé de comprendre la contribution de la méthode étudiée.

Par exemple, le rôle de la méthode checkCurrentPublicationCoherentWithInitialPublication() est difficile à appréhender.

Pour cela il faut la remettre dans son contexte, à savoir qu'elle est appelée par la méthode checkPublication(), qui est appelée par checkBookCorrectlyFilled et qui est appelée par receiveNewBook().

L'analyse du code

Le code contient un grand nombre de méthodes (17) avec plusieurs disproportions dans leur répartition. La première disproportion est la répartition par opérateur de portée :

	1 méthode public

	16 méthodes private

Ainsi la seule méthode public nécessite 16 méthodes private. Un tel déséquilibre peut indiquer que la méthode publique est soit très complexe soit gère trop de choses, et parfois même les deux.

La seconde disproportion concerne les sujets traités dans les méthodes :

	1 méthode contenant le processus métier

	14 méthodes de validation (ie les méthodes commençant 'check'),

	1 méthode de conversion

	1 méthode de sous-traitance de processing

Ainsi, plus de 82% (14/17) des méthodes portent sur le même sujet, la validation de l'argument de la méthode public. Ici aussi, le déséquilibre constaté indique que ce sujet est largement prépondérant par rapport aux autres.

Amélioration du code

La principale origine de ces déséquilibres est la présence massive de la validation de l'objet de type NewBookDTO. Pour améliorer la situation, il faut déplacer le code de validation dans une classe dédiée à la validation du DTO. Cela permettra de remplacer les 14 méthodes de validation par une seule qui appellera une méthode public de la classe nouvellement créée.

Ainsi, dans le premier cas, le ratio de méthodes public par rapport aux méthodes private passera de 1/16 à 1/2.

Et dans le deuxième cas, il n'y aura plus que 3 méthodes :

	1 méthode contenant le processus métier

	1 méthode de conversion

	1 méthode de sous-traitance de processing

Le résultat pour la nouvelle classe d'implémentation sera :

public class BookReceptionService3Impl implements BookReceptionService {

 private BookRestorationService bookRestorationService;
 private BookConverter bookConverter;
 private BookService bookService;

 @Override
 public void receiveNewBook(@NotNull NewBookDTO newBook) {
 BookDTOValidator.checkBookCorrectlyFilled(newBook);
 DetailedBook detailedBook = convertToDetailedBook(newBook);
 processNewBook(detailedBook);
 }

 @NotNull
 private DetailedBook convertToDetailedBook(@NotNull NewBookDTO newBook) {
 return bookConverter.convertToDetailedBook(newBook);
 }

 private void processNewBook(DetailedBook detailedBook) {
 if (detailedBook.getState() == BookState.DAMAGED) {
 bookRestorationService.submit(detailedBook);
 } else {
 bookService.registerNewBook(detailedBook);
 }
 }
}

Le déséquilibre retiré de cette implémentation va naturellement se reporter sur la classe NewBookDTOValidator et l'impression peut être que rien n'a changé.

Ce n'est pas exact. Avec cette nouvelle conception, la nouvelle classe BookDTOValidator est construite avec un seul but : valider les classes NewBookDTO et donc, son contenu, même s'il est volumineux, porte sur un seul sujet. Bien entendu, en fonction des besoins, le périmètre de cette classe pourra être élargi à d'autres DTO liés à NewBookDTO,permettant ainsi la mise en commun des méthodes de validation des champs.

Il est néanmoins possible d'améliorer le contenu de cette classe.

Tout d'abord on constate que la plupart des méthodes sont basées sur le pattern suivant :

if(condition) {
 throw new IllegalArgumentException(message);
}

Ce pattern est uniquement technique et peut être substitué par les méthodes suivantes :

	assertTrue(boolean condition, String message)

	assertNotNull(Object object, String message)

	assertNotBlank(String string, String message)

De plus, du fait de l'utilisation de ces méthodes techniques, certaines méthodes métiers, découpées en sous-méthodes techniques pour faciliter la lecture, pourront être regroupées en une seule méthode (ie. checkPublication(), checkFormat(), checkState()).

Enfin, les méthodes techniques assertXXX() sont des méthodes génériques qui peuvent être utilisées ailleurs dans le code. Elles sont déplaçables dans une classe dédiée commune à tout le projet. Mieux, il est possible également d'utiliser des méthodes de ce type disponibles dans des librairies externes (ex: Apache Commons Lang).

Cela donne le code suivant pour la classe BookDTOValidator :

public class BookDTOValidator {

 private static final int WRITING_CREATION_YEAR = -7000;

 public static void checkBookCorrectlyFilled(@NotNull NewBookDTO newBook) {
 checkAuthor(newBook);
 checkTitle(newBook);
 checkPublicationHouse(newBook);
 checkPublication(newBook);
 checkFormat(newBook);
 checkPageCount(newBook);
 checkState(newBook);
 }

 private static void checkAuthor(@NotNull NewBookDTO newBook) {
 assertNotBlank(newBook.getAuthor(), "The author field is missing or is blank");
 }

 private static void checkTitle(@NotNull NewBookDTO newBook) {
 assertNotBlank(newBook.getTitle(), "The title field is missing or is blank");
 }

 private static void checkPublicationHouse(@NotNull NewBookDTO newBook) {
 assertNotBlank(newBook.getPublishingHouse(), "The publishingHouse field is missing or is blank");
 }

 private static void checkPublication(@NotNull NewBookDTO newBook) {
 assertTrue(newBook.getInitialPublicationYear() < WRITING_CREATION_YEAR,
 "The initialPublicationYear field is invalid, the writing didnt exist at this time");
 assertTrue(newBook.getCurrentPublicationYear() < newBook.getInitialPublicationYear(),
 "The currentPublicationYear field shall not be lower than the initialPublicationYear");
 }

 private static void checkFormat(@NotNull NewBookDTO newBook) {
 assertNotNull(newBook.getFormat(), "The format of the book is missing");
 try {
 BookFormat.valueOf(newBook.getFormat());
 } catch (Exception ex) {
 throw new IllegalArgumentException("The format is unknown");
 }
 }

 private static void checkPageCount(@NotNull NewBookDTO newBook) {
 assertTrue(newBook.getPageCount() >= 5, "The number of pages is too low. The minimal page count is 5");
 }

 private static void checkState(@NotNull NewBookDTO newBook) {
 assertNotNull(newBook.getState(), "The state of the book is missing");
 try {
 BookState.valueOf(newBook.getState());
 } catch (Exception ex) {
 throw new IllegalArgumentException("The state of the book is unknown");
 }
 }
}

Cette nouvelle classe dédiée à la validation de NewBookDTO est constituée de 8 méthodes, 1 public et 7 private. Elle est bien plus équilibrée, améliorant la lisibilité et la modularité du code.

Conclusion

Le refactoring du code SoC a permis d'améliorer grandement la situation : le nouveau code est plus modulaire et plus lisible. Le refactoring a permis de conserver l'esprit SoC tout en redécoupant le code initial qui pourtant avait été fait avec une approche SoC. Ce redécoupage a principalement porté sur la séparation entre le métier et la technique.

Ce qui est à retenir ici, c'est que même en applicant consciencieusement une approche SoC, il est possible de dévoyer le code et d'en faire quelque chose de difficilement exploitable et maintenable.

L'approche SoC n'est pas une Silver Bullet et ne résout pas tous les problèmes et peut même faire empirer les choses comme vu dans ce chapitre. Un indice important pour détecter un problème : la lisibilité du code. Si le code n'est pas facilement lisible (sauf cas très particuliers, comme les optimisations), alors il y a probablement un problème dans sa conception. Pour essayer d'en comprendre l'origine, il faut essayer de faire quelques analyses et mesures supplémentaires. C'est ce qui a été fait ici en mesurant le ratio de méthodes public / private ou celui des sujets de méthodes.Ce ne sont pas les seules mesures possibles, il faut les adapter au code étudié.

Au final, si, après application, l'approche SoC donne un résultat moins satisfaisant que l'état initial du code, alors autant ne pas refactorer le code existant, quitte à y revenir plus tard, avec plus de recul, plus d'expérience ou le support d'un autre développeur.

So and what else ?

D'un premier abord, le concept de Separation of concern peut sembler plutôt facile à appréhender puisqu'il "suffit de trier les choux des carottes". Mais dans sa mise en pratique, ce n'est pas toujours évident et pour certains cas il faudra parfois s'y reprendre à plusieurs fois pour affiner le découpage.

Dans les exemples de cet article, nous avons vu différents aspects pratiques de l'application du SoC :

	la découpe de contrat par sujet

	la découpe de code pour visualiser les sujets traités

	la séparation entre le fonctionnel et le technique

	la séparation entre couches

La notion de separation of concerns se retrouve également dans différents design patterns du Gang of Four dont, par exemple :

	Bridge pattern

	Proxy pattern

	Etc…

Le principal bénéfice de l'application du SoC est la clarté du code. En effet en séparant et en découpant le code de manière pertinente, les sujets traités sont bien identifiés et isolés. Et donc cela facilite la réutilisation, la maintenance et l'évolution du code.

Le principal écueil à éviter est un morcellement trop important qui mènerait une augmentation artificielle de la complexité du code. Le premier signe de cet écueil est la diminution de la lisibilité globale. Il ne faut pas hésiter à réexaminer le code factorisé pour en comprendre l'origine et remettre en cause l'application du SoC.

Comme souvent, tout est une question d'équilibre. Le SoC est un outil à utiliser à bon escient. Si, dans une mise en oeuvre particulière, il ne donne pas satisfaction, il ne faut pas hésiter le mettre de côté et revenir à la situation initiale, quitte à y revenir plus tard avec un angle d'approche différent.

La notion de "Separation of concern" est tout autant pertinente sur d'autres aspects du logiciel, telle que l'architecture ou le métier et il serait bien dommage de la cantonner au développement.

Et bien entendu, la méthode "Separation of concern" n'est pas la seule permettant d'améliorer le code, il en existe bien d'autres qu'il conviendra de combiner pour obtenir un code clair et performant.

Quelques liens

	L1 On the role of scientific thought. E.W. Dijkstra, ISBN 0-387-90652-5

	L2 Wikipedia EN

	L3 aspiringcraftsman 03-01-2008

	L4 Design patterns - Elements of Reusable Object-Oriented Software

	L5 Code source

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/188317438199108d1e8f8346ab041d982cdd7ea450864145847f483e.png
Composant

niveau N
Composant Composant
niveau N-1 niveau N-1
Composant Composant Composant Composant
niveau N-2 niveau N-2 niveau N-2 niveau N-2
Composant ~ Composant ~ Composant ~ Composant ~ Composant ~ Composant ~ Composant Composant
niveauN-3 niveauN-3 niveauN-3 mveauN-3 nveauN-3 mveauN-3 mveauN-3 niveauN-3

