

Journal TapTempo en Advanced Brainfuck

Posté par icefinger le 28 mars 2018 à 14:38.
Licence CC By‑SA.

Étiquettes :

	brainfuck

	abrainfuck

	nouveau_langage

	taptempo

[image:]

Très cher journal,

Je me suis rendu compte que tu es en perte de vitesse sur TapTempo, que la fréquence de nouveaux portages diminue significativement. Étant donné l'importance du projet, je me suis dit "il faut que je fasse quelque chose!". J'ai cherché un langage à utiliser, mais le choix est restreint. Je me suis attardé sur la version brainfuck, avec le regret de ne pas avoir pouvoir utiliser ce langage universellement reconnu (la note du journal parle d'elle même). Et je me suis confronté à la terrible vérité: le brainfuck avait besoin de pipes, sans cela il était impossible de créer taptempo! Comment était-ce possible? Il fallait faire quelque chose! J'ai donc créé Advanced Brainfuck, ou ABrainfuck.

Dans l'état d'esprit originel de simplicité extrême, qui fait toute sa puissance, je n'ai créé qu'un seul nouvel opérateur: le switcher "~". À quoi sert-il? À ouvrir des fichiers! et en rw part défaut (simplicité oblige, les utilisateurs n'ont qu'à pas se tromper). Alors comment ça marche?

Et bien, par défaut, à l'instar du brainfuck, les opérateurs ">", "<", "+", "-" modifient le pointeur courant (décalage et +/-1). Nous sommes en mode "mémoire", et le pointeur sera appelé "pointeur mémoire". Les opérateurs "." et "," quant à eux servent à lire et écrire dans le fichier ouvert, appliqué sur la position du "pointeur fichier". En écriture si un caractère existe, il le remplace, "." et "," décalent automatiquement le pointeur fichier de +1 (l'agrandissant si nécessaire). Le fichier ouvert par défaut est /dev/stdout. "." permet donc d'imprimer, et "," ne fait rien.

Oui mais comment fait-ont pour ouvrir un fichier? et bien on prépare d'abord la mémoire avec une chaîne de caractères correspondant à l'adresse du fichier, terminant par \0 bien sûr. On se met sur le premier caractère et on utilise l'opérateur "~". On passe alors en mode fichier. Les opérateurs ">", "<", "+", "-" s'applique sur le pointeur fichier et l'adresse pointée dans le fichier. "," écrit du fichier vers la mémoire et "," écrit de la mémoire vers le fichier, les deux décalent automatiquement le pointeur mémoire de +1. En réutilisant l'opérateur "~" on retourne en mode mémoire, le fichier restant ouvert.

Vous l'aurez compris, ouvrir /dev/stdin permet d'avoir l'entrée standard, et, par exemple, l'ouverture du fichier /proc/uptime permet d'obtenir un temps relatif!

Et voilà le travail, on peut maintenant implémenter un TapTempo sans pipe grâce à ce nouveau langage qui, je n'en doute pas un instant, figurera parmi les plus utilisés!

Maintenant: le code de TapTempo.abf. Il donne un BPM toute les 4 pressions sur entrée, sur une base de 240 BPM (plus facile à mettre en mémoire, ça nécessite qu'un byte). Il fait donc une approximation et donne 120, 60, 48… en fonction de votre vitesse. La prochaine version codera la base sur 2 bytes, et permettra une bien meilleure précision. L'algorithme est commenté et contient pas mal de choses intéressantes telles que des if, des opérations et notamment des divmod. Et le voici:

preparation of the stdout address:
/
>+++
[>+++
[<<+++++>>-]<-]
<++.

d
>
>+++++
[>+++++
[<<++++>>-]<-]
<.

e
>
>+++++
[>+++++
[<<++++>>-]<-]
<+.

v
>
>++++
[>+++++
[<<++++++>>-]<-]
<--.

/
>
>+++
[>+++
[<<+++++>>-]<-]
<++.

s
>
>+++++
[>+++++
[<<+++++>>-]<-]
<----------.

t
[>+>+<<-]
>>[-<<+>>]<+.

d
>
>+++++
[>+++++
[<<++++>>-]<-]
<.

o
>
>++++
[>+++++
[<<++++++>>-]<-]
<---------.

u
>
>++++
[>+++++
[<<++++++>>-]<-]
<---.

t
>
>+++++
[>+++++
[<<+++++>>-]<-]
<---------.

NULL
>

preparation of the stdin address
/
>
>+++
[>+++
[<<+++++>>-]<-]
<++.

d
>
>+++++
[>+++++
[<<++++>>-]<-]
<.

e
>
>+++++
[>+++++
[<<++++>>-]<-]
<+.

v
>
>++++
[>+++++
[<<++++++>>-]<-]
<--.

/
>
>+++
[>+++
[<<+++++>>-]<-]
<++.

s
>
>+++++
[>+++++
[<<+++++>>-]<-]
<----------.

t
[>+>+<<-]
>>[-<<+>>]<+.

d
>
>+++++
[>+++++
[<<++++>>-]<-]
<.

i
>
>++++
[>+++++
[<<+++++>>-]<-]
<+++++.

n
>
>++
[>+++++
[<<+++++++++++>>-]<-]
<.

NULL
>

preparation of the uptime file address

/
>
>+++
[>+++
[<<+++++>>-]<-]
<++.

p
>
>++++
[>+++++
[<<++++++>>-]<-]
<--------.

r
>
>+++++
[>+++++
[<<+++++>>-]<-]
<-----------.

o
>
>++++
[>+++++
[<<++++++>>-]<-]
<---------.

c
>
>+++++
[>+++++
[<<++++>>-]<-]
<-.

/
>
>+++
[>+++
[<<+++++>>-]<-]
<++.
u
>
>++++
[>+++++
[<<++++++>>-]<-]
<---.

p
>
>++++
[>+++++
[<<++++++>>-]<-]
<--------.

t
>
>+++++
[>+++++
[<<+++++>>-]<-]
<---------.

i
>
>++++
[>+++++
[<<+++++>>-]<-]
<+++++.

m
>
>++
[>+++++
[<<+++++++++++>>-]<-]
<-.
e
>
>+++++
[>+++++
[<<++++>>-]<-]
<+.

NULL
>[-]

newline
>
++++++++++
.
return to the begining
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
[
moving to stdin and open it
>>>>>>>>>>>>
~~
moving to random memory space read 4 times remove

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
,,,,[-]

return to the begining
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~
moving to stdin
>>>>>>>>>>>>
moving to uptime
>>>>>>>>>>>

open
~~
shift from the file names
>>>>>>>>>>>>>>>>>>>>

save the time (cleaning a bit first)
20 to get space

[-]>[-]>[-]>[-]>[-]>[-]>[-]>[-]>[-]>[-]>[-]>[-]>[-]>[-]

<<<<<<<<<<<<<
get the data (need loops to stop at the dot)

first loop looking for the dot
+
[
,

>[-]>[-]>[-]<<< clean a bit

>>+++[>++++[<<++++>>-]<-]<-- create dot character on next

[-<->] substract it from the previous char

>>>+<<< increase counter

< shit to it and check if it 0
]

>>>>--- decrease the counter to take 2 num before the dot

reopen the file:
return to the begining
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
moving to stdin
>>>>>>>>>>>>
moving to uptime
>>>>>>>>>>>
open
~~
shift memory to the same zone
20 to get space
>>>>>>>>>>>>>>>>>>>>

read first characters and clean mem
>>>>

[
<,[-]>-
]
<< go back
read it for real
,>,>
prepare the 0 ascii value
>>+++[>++++[<<++++>>-]<-]<
[-<+>]<

[-<-<->>]remove it

<<<++++++++++ prepare the 10 multiplicator

[>[<<+<+>>>-]<<[>>+<<-]>-]>[-]<<[-]< do the multiplication and go on result

>>>>[-<<<<+>>>>]<<<< add the units to the result to get the total time

go to current copy current to new
<<<<<

copy result to new cleaning first
>[-]<
[->+<]

copy new to current
>>>>>[-<<<<<+>>>>>]<<<<<

do subtraction far enough for the divmod with conservation
[->>>>>>+>+<<<<<<<]>>>>>>[-<<<<<<+>>>>>>]
<<<<<
[->>>>+>+<<<<<]>>>>[-<<<<+>>>>]>

[->-<]

<---------------- prepare memory for division 240 bpm division

[->+>-[>+>>]>[+[-<+>]>+>>]<<<<<<] divide result: 0 n d minus n%d n%d n/d

[-]>[-]>[-]>[-]<<<<< clean a bit then organize rate current previous at the begining of the mem
going back to stdout and open
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
~~
moving to stdin
>>>>>>>>>>>>
moving to uptime
>>>>>>>>>>>
moving to memory space value and print it (still need ascii conversion)
>>>>>>>>>>>>>

>>>>>>>>>>

to print it need modulos 10 and 100
prepare the 100 div

check further if it s useful first of all copy
[->>>>>>>>+>+<<<<<<<<<]>>>>>>>>[-<<<<<<<<+>>>>>>>>]
create the 100
>>
>+++++
[>+++++
[<<++++>>-]<-]<
<<

check if the value is bigger than 100 put the 0 or 1 on the current position
z x y temp0 temp1
^
>>>[-]>[-]<<<<[-]
>[>>+
<[->[-]>+<<]
>[-<<<+>>>]
>[-<<+>>]
<<-<-]
clean
>[-]>[-]<<<
do it only if is not 0
[
<<<<<<

>+++++
[>+++++
[<<++++>>-]<-]
<<<

[->+>-[>+>>]>[+[-<+>]>+>>]<<<<<<] divide result: 0 n d minus n%d n%d n/d

>>>>>>

+++[>++++[<<++++>>-]<-]<

[-<+>]<

. print it

clean
[-]<<[-]<[-]

copy the modulo

>>[-<<<+>>>]

>>>>>

[-]

]

do the same for 10
<<<<<<<
<[->>>>>>>+>+<<<<<<<<]>>>>>>>[-<<<<<<<+>>>>>>>]
create the 10
>>++++++++++<<

check if the value is bigger than 10 put the 0 or 1 on the current position
z x y temp0 temp1
^

>>>[-]>[-]<<<<[-]
>[>>+
<[->[-]>+<<]
>[-<<<+>>>]
>[-<<+>>]
<<-<-]

clean
>[-]>[-]<<<
do it only if is not 0
[
[-]
<<<<<

++++++++++<<

[->+>-[>+>>]>[+[-<+>]>+>>]<<<<<<] divide result: 0 n d minus n%d n%d n/d

>>>>>>

+++[>++++[<<++++>>-]<-]<

[-<+>]<

. print it

clean
[-]<<[-]<[-]

copy the modulo
>>[-<<<+>>>]

>>>>>

]

change the modulo to ascii
<<<<<<
+++[>++++[<<++++>>-]<-]<
[-<+>]<
. print it
[-]

clean
[-]

write BMP
++++++++[>++++<-]>.[-]#++++++[>+++++++++++<-]>.[-]+++++++[>+++++++++++<-]>.[-]++++++++[>++++++++++<-]>.[-]
new line
#
<<<<<<<<<<<<<<.
#

return to the begining never at 0 infinite loop
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

]

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

