

Journal décrire une une image avec une iA locale

Posté par i M@N (site web personnel) le 08 mai 2024 à 10:41.
Licence CC By‑SA.

Étiquettes :

	llama

	llava

	python3

	intelligence_artificielle

	grands_modèles_de_langage

[image:]

Aujourd'hui c'est fourien™, petit tuto sans prétention!

Pour décrire des images en utilisant une iA localement j'utilise LLaVA qui fait partie de LLaMA C++ (llama.cpp)

prérequis :

	créer un dossier image_summary et ses sous dossiers

mkdir -p image_summary/bin image_summary/models image_summary/data/img image_summary/data/txt

	créer un venv (j'utilise Python 3.10.6)

python -m venv ./image_summary/venv/

	activer l'environnement

source ./image_summary/venv/bin/activate

	mettre à jour pip

pip install --upgrade pip

	installer les dépendances

pip install 'glob2==0.7'

	désactiver l'environnement

deactivate

	télécharger le code source de llama.cpp de cette release (llava a été temporairement retiré afin de refactoriser le code)

	décompresser l'archive du code source dans un répertoire

mkdir llama.cpp-b2356 && tar -zvxf llama.cpp-b2356.tar.gz --strip-components=1 -C ./llama.cpp-b2356/

	compiler les binaires de llama.cpp pour avoir llava-cli

cd llama.cpp-b2356

cmake -Bbuild # basique CPU + RAM

cmake -Bbuild -DLLAMA_CUBLAS=ON # pour utiliser CUDA avec une carte NViDiA

cmake --build build --config Release

	copier ./build/bin/llava-cli dans image_summary/bin/

	télécharger les fichiers mmjprog et ggml

ggml-model-q4_k.gguf (LLM 4Go) et mmproj-model-f16.gguf (la partie multimodale qui "voit" 600Mo) dans image_summary/models/

	placer ce script python dans image_summary/image_summary.py

mon ""code"" python avec coloration syntaxique
(désolé je suis pas un grand codeur j'accepte les pull requests ^^)
from pathlib import Path
import glob
import subprocess
import os

LLAVA_EXEC_PATH = "./bin/llava-cli"
MODEL_PATH = "./models/ggml-model-f16.gguf"
MMPROJ_PATH = "./models/mmproj-model-f16.gguf"

DATA_DIR = "data"
IMAGE_DIR = Path(DATA_DIR, "img")
TXT_DIR = Path(DATA_DIR, "txt")

types = ('*.jpg', '*.png') # the tuple of file types
image_paths = []
for files in types:
 image_paths.extend(sorted(glob.glob(str(IMAGE_DIR.joinpath(files)))))
#print(image_paths)

txt_paths = sorted(glob.glob(str(TXT_DIR.joinpath("*.txt"))))

TEMP = 0.1
for llava 1.5
PROMPT = "You are an assistant who perfectly describes images."

bash_command = f"{LLAVA_EXEC_PATH} -m {MODEL_PATH} --mmproj {MMPROJ_PATH} --temp {TEMP} -p '{PROMPT}' --ctx-size 0"
#print(bash_command)
Bash command output
./bin/llava-cli -m ./models/ggml-model-f16.gguf --mmproj ./models/mmproj-model-f16.gguf --temp 0.1 -p "Describe the image." --ctx-size 0

for image_path in image_paths:
 image_name = Path(image_path).stem
 image_summary_path = TXT_DIR.joinpath(image_name + ".txt")

 if not os.path.exists(image_summary_path):
 print(f"Processing {image_path}")
 # add input image and output txt filenames to bash command
 bash_command_cur = f"{bash_command} --image '{image_path}' > '{image_summary_path}'"
 print(bash_command_cur)

 # run the bash command
 process = subprocess.Popen(
 bash_command_cur, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE
)

 # get the output and error from the command
 output, error = process.communicate()

 # commment output and error for less verbose output
print("Output:")
print(output.decode("utf-8"))

print("Error:")
print(error.decode("utf-8"))

 # return the code of the command
 return_code = process.returncode
print(f"Return code: {return_code}")
print()

 print("Done")

 # clean txt files
 bash_command_sed = f"sed -i '/_/d' '{image_summary_path}' && sed -i '/^[[:space:]]*$/d' '{image_summary_path}'"
 print(bash_command_sed)

 # run the bash command
 process = subprocess.Popen(
 bash_command_sed, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE
)

 print("txt files cleaned")

 else:
 print(f"Already processed {image_summary_path}")

	placer 2 ou 3 images dans image_summary/img/ pour tester

	lancer le script

./image_summary/venv/bin/python image_summary.py

	profit

dans image_summary/txt/ le résultat, ça prend environ 1 minute par image sur mon processeur i5-12600K (beaucoup moins avec CUDA)

références :

https://github.com/ggerganov/llama.cpp

https://huggingface.co/mys/ggml_tree/main

https://plainenglish.io/community/generate-a-summary-of-an-image-with-an-llm-in-python-0fc069

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars987047000avatar.gif

