

Journal Retour sur les cours en ligne gratuit de Berkeley - partie I SAAS

Posté par jay le 26 mars 2012 à 02:21.

Étiquettes :

	formation

[image:]

Je me suis inscrit à une bonne partie des cours et je voulais vous faire part de mes impressions. Ici je vais donc parler du cours intitulé "saas" pour Software As A Service.

Je commence par celui-ci car c'est pour moi le moins bien réussis et comme ça je garde le meilleur pour la fin.

Fonctionnement des cours en ligne:

Ca se passe sur plusieurs semaines (5 pour celui-ci). Chaque semaine de nouvelles vidéos sont mises en ligne. Il y a des quizz intégrés à la vidéo pour voir si on comprend bien. Et des "devoirs" chaque semaine sous forme de Quizz et/ou de Développement à faire.

Sujet du cours:

ruby, cloud computing, méthode agile, Behavior-Driven Design, and Test-Driven Development, MVC

Les plus:

Je trouve le sujet très intéressant et moderne. J'ai entendu plusieurs fois parler de ruby mais dans le contexte de développement agile c'est plus captivant et on voit mieux l'intérêt du langage.

En dehors de ruby et de la méthode agile, j'ai été aussi captivé par le développement/l'organisation d'application sous forme de service. Dommage que le cours ne creuse pas plus le sujet on montrant des exemple concrets (mais bon le cours n'est pas encore fini).

Le système de correction des problèmes est très bien fait. On envoie ce qu'on a codé pour répondre à chaque question. Ensuite le site opère une petite batterie de test unitaires et renvoie le résultat. Du coup, si on s'est trompé, on reçoit un beau rapport d'erreur et on voit clairement où on a merdé.

les moins:

La qualité des vidéos est très mauvaise. C'est un simple cours qui a été filmé à l'université par une webcam. La vidéo est tronquée et la qualité est telle qu'on ne peut pas lire les petits caractères. A couse de cela les exemples de code et les démonstrations sont est illisibles, il ne reste que les slides… Niveau son, ça va mais on n'entends pas les questions des élèves seulement les réponses du professeur.

Les vidéos sont très courte et ne font que survoler le sujet. Il faut lire le livre pour avoir plus de détails et il n'est pas gratuit. Pour l'avoir, il faut l'acheter sur amazon +-10€ (version numérique ou papier) mais du coup plein d'élève (qui sont des 4 coins du globe) n'y ont pas accès car il n'ont pas de carte de crédit ou simplement pas l'argent.

Conclusion:

Je suis déçus par ce cours car je le trouve bâclé, trop rapide/pressé sur beaucoup de points, aussi par la qualité des vidéos et enfin à cause le livre payant qui n'entre pas la logique de coursera.org. Cela dit rien que les sujets abordés valent le coup.

Donc j'en sort moins débile et motivé pour de nouvelles choses.

Programme du cours:

Week One:

Engineering SW is Different from HW (§1.1-§1.2)
Development Processes: Waterfall vs. Agile (§1.3)
Assurance (§1.4)
Productivity (§1.5)
Software as a Service (§1.6)
Service Oriented Architecture (§1.7)
Cloud Computing (§1.8)
Client-Server Architecture, HTTP, URIs, Cookies (§2.1-2.2)
HTML & CSS, XML & XPath (§2.2-2.3)
3-tier shared-nothing architecture, horizontal scaling (§2.4)

Week Two:

Three pillars of Ruby (§3.1)
Everything is an object, and every operation is a method call (§3.2–3.3)
OOP in Ruby (§3.4)
Reflection and metaprogramming (§3.5)
Functional idioms and iterators (§3.6)
Model-View-Controller Design Pattern (§2.5)
Models: ActiveRecord and CRUD (§2.6)
Routes, Controllers and REST (§2.7)
Template Views (§2.8)

Week Three:

Duck typing and mix-ins (§3.7)
Blocks and Yield (§3.8)
Rails Basics: Routes & REST (§3.9)
Databases and Migrations (§3.10)
ActiveRecord Basics (§3.11)
Controllers and Views (§3.12)
When things go wrong: Debugging (§3.13)
Forms (§3.14)
Redirection, the Flash and the Session (§3.15)
Finishing CRUD (§3.16)

Week Four:

Introduction to Behavior-Driven Design and User Stories (§4.1)
SMART User Stories (§4.2)
Introducing and Running Cucumber and Capybara (§4.3-§4.4)
Lo-Fi UI Sketches and Storyboards (§4.5)
Enhancing Rotten Potatoes Again (§4.6)
Explicit vs. Implicit and Imperative vs. Declarative Scenarios (§4.7)
Fallacies & Pitfalls, BDD Pros & Cons (§4.8-§4.9)

Week Five:

Testing Overview (§5.1)
FIRST, TDD and Getting Started with RSpec (§5.2)
The TDD Cycle: Red-Green-Refactor (§5.3)
More Controller Specs and Refactoring (§5.4)
Fixtures and Factories (§5.5)
TDD for the Model & Stubbing the Internet (§5.6-§5.7)
Coverage, Unit vs. Integration Tests, Other Testing Concepts, and Perspectives (§5.8-§5.11)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

