

Journal Une petite histoire d'utilisation type fort dans Ocaml

Posté par JN le 14 janvier 2017 à 20:52.
Licence CC By‑SA.

Étiquettes :

	ocaml

	programmation_fonctionnelle

	qualité

[image:]

Sommaire

	
	Obtenir du code correct par l'utilisation de types

	Quelques commentaires sur cette aventure

Obtenir du code correct par l'utilisation de types

Je vais illustrer cette idée avec un cas trivial mais pragmatique. Pour se mettre à un langage, rien ne vaut un petit projet perso, avant de passer aux choses sérieuses en regardant le code écrit par d'autres. Dans mon cas, il s'agit de l'écriture d'un utilitaire pour afficher des schémas Kicad et les différences entre deux versions (rien de gros ni professionnel comme GNU, comme dirait l'autre). Par avance, mes excuses aux grands maîtres d'Ocaml si j'écorche le langage ou ses concepts.

Les coordonnées sont représentées par des couples int*int, mais dans l'optique d'utiliser le typage, il était plus intéressant de différencier le type coordonnées d'une simple paire. En effet, rien n'est plus ressemblant à une paire d'entiers qu'une autre paire d'entiers. En Ocaml, par exemple, on peut définir des types qui sont synonymes du type « paire d'entiers » :

type anon_coord = int*int;;
type anon_coord = int*int
type anon_coord2= int*int;;
type anon_coord2= int*int

Mais alors les deux types sont synonymes aussi :

#let x:anon_coord = 5,7;;
val x : anon_coord = (5, 7)
let y:anon_coord2 = x;;
val y : anon_coord2 = (5, 7)

J'ai donc opté dès le départ pour un type annoté, qui serait particularisé :

type coord = Coord of (int*int);;
type coord = Coord of (int * int)
let z = Coord (6,8);;
val z : coord = Coord (6, 8)
let Coord (x,y) = z;;
val x : int = 6
val y : int = 8

Le type a alors un constructeur unique et l'annotation empêche de passer une simple paire là où on attend le type annoté. La déconstruction par pattern matching permet simplement d'accéder aux coordonnées individuelles.

L'affichage de schéma consiste à afficher les symboles des composants électroniques à certains emplacements ainsi que de primitives (lignes, textes). Ces composants sont décrits dans des fichiers bibliothèque et il est nécessaire de les translater et les tourner correctement dans le contexte du schéma. En fait, chaque symbole est décrit par un ensemble de primitives graphiques similaires à celle du schéma et qui doivent subir la même transformation pour obtenir la transformation du symbole.

Or, lors du codage de cette fonctionnalité, il est apparu assez rapidement que j'avais introduit des bugs qui faisaient que les primitives des composants étaient affichées sans subir de transformation, ce qui les collait toutes dans le coin supérieur gauche du schéma (un comportement de bug bien connu dès qu'on joue un peu à dessiner). J'aurais pu à ce moment dégainer le débugger ou ajouter quelques lignes de traces pour voir ce qu'il en était, mais le projet étant didactique, j'ai préféré recourir à une solution à base de typage.

J'avais utilisé le même type coord dans le traitement du schéma et des bibliothèques, mais il parait plus judicieux de différencier ces types, car même si les bibliothèques de composant utilisent le même format de description que celles des fichiers de schéma, elles décrivent des coordonnées qui seront forcément relatives au point d'ancrage du composant dans le schéma. Il fallait donc créer un type annoté différent pour les coordonnées des primitives de bibliothèque, un type qui ne serait pas connu du canevas et qui permettrait de détecter un passage des primitives au canevas sans transformation.

type relcoord = RelCoord of (int*int);;
type relcoord = RelCoord of (int*int)

Une fois le type injecté dans les types de primitives, merlin, l'outil de vérification à la volée indique dans l'éditeur tous les points qui nécessitent correction, indépendamment du fait que le comportement était correcte auparavant. Soit c'est une évolution de type et il faut changer le constructeur, au moment du parsing du fichier bibliothèque, ou l'utilisation, au moment d'injecter le composant dans le schéma, soit il y avait le bug et il faut ajouter la transformation adéquate pour transformer le type relcoord en type coord consommable par le contexte.

La beauté du truc, c'est que mis à part les oublis de transformation, j'avais tout codé correctement. Du coup, quand ça a compilé, ça a marché. Car c'est le compilateur qui m'a indiqué où se trouvaient mes bugs. Comparé à certaines pérégrinations de débogage de python dans certaines branches de traitement mal testées, je dois dire que ça a été une vraie bouffée d'oxygène et un argument supplémentaire pour coder plus en ocaml.

Quelques commentaires sur cette aventure

L'utilisation de types annotés n'introduit pas de code supplémentaire ou d'utilisation d'espace mémoire dans l'exécutable. Une fois la vérification de type effectuée, les types annotés sont identiques aux types synonymes à l'exécution.

L'injection du Relcoord est moins invasive qu'il n'y parait. Ocaml a l'inférence de type, ce qui limite les besoins à la définition des types internes du module de gestion des bibliothèques de composants de Kicad, et aux constructeurs et déconstructeurs. La création d'opérations au niveau d'abstraction Coord, Relcoord tels que

val +$: coord -> relcoord -> coord
val rotation : relcoord -> relcoord

et le fait que la plupart des fonctions sont déclarées sans spécification de type diminue grandement le volume de la migration.

On peut (doit ?) pousser le concept plus loin, comme par exemple écrire une bibliothèque de calcul matriciel qui vérifie à la compilation la dimensionnalité des calculs.

Cela à un rapport (très simplifié) à la preuve de programme. Ainsi, à présent, je peux garantir qu'aucun composant électronique ne peut être passé directement à l'affichage. C'est une garantie sans intérêts pour l'utilisateur, mais on peut imaginer saisir dans les relations entre les types des garanties susceptible d'intéresser l'utilisateur, par exemple, que l'application ne fournit pas à un tiers les informations que je lui fournis.

À ma connaissance, seuls les langages fonctionnels typés offrent cette possibilité de différencier des types structurellement identiques, autrement qu'en faisant des classes.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

