

Journal Server chat

Posté par kennux le 15 décembre 2003 à 17:04.

Étiquettes :
aucune

[image:]

/**

 * Chat avance java cote serveur

 * 12/11/2003

 * Remi Wipliez && Raphael Mariage.

 * version 1.0

 * La classe comprend le main et la definition des Threads, un thread par client

 */

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.net.DatagramSocket;

import java.net.DatagramPacket;

import java.net.InetAddress;

import java.util.Hashtable;

import java.util.StringTokenizer;

import java.lang.Thread;

import java.util.Enumeration;

import java.util.Vector;

import java.util.GregorianCalendar;

/* l'objet info_client contient toutes les informations "vitales" pour l'identification du client, c'est a dire qu'a chaque client est

 * associe un objet Info-client avec tous ces parametres */

class Info_client {

 int portcl;

 String nick, passwd, groupe;

 InetAddress adrcl;

 boolean connect;

 int cantalk=0, grade=0;

 public Info_client(String nickname, String pass, InetAddress adr, int port, boolean connexion, int compteur, int grad) {

 nick = nickname;

 adrcl = adr;

 portcl = port;

 passwd = pass;

 connect = connexion;

 cantalk = compteur;

 grade = grad;

 }

}

class Group {

 String nom, proprio;

 Vector membres;

 public Group(String name, String creat, Vector members) {

 nom = name;

 proprio = creat;

 membres = members;

 }

}

public class ServerUDP {

 static int ind1, lg, serv_port, max_cl = 30, taille_buff = 10240, ind=0, cl_port, dest_port, k=0, port2;

 static String serv_address, serv_port_tmp, chaine, ligne, adr="", login="", mess_recu="0", date, time, sepa, cmde="", line, pass, fonction;

 static String renvoi_exit, user, renvoi, argu="", commande="", argument="", message="", cl, passwd="", cle, port="", nouveaucl, passcrypte;

 static String[] info = new String[2];

 static char tiret;

 static Hashtable table_clients = new Hashtable(), table_groupes = new Hashtable();

 static DatagramPacket dp, dpmdp, dpok, dpbadlog, dpexist;

 static DatagramSocket ds;

 static byte buffer[] = new byte[taille_buff];

 static StringTokenizer str_tok, infos;

 static InetAddress adr_cl, adr_dest, cl_adr, ia;

 static Info_client info_cl, desti, client_t, recup, stock, majinfo, obj_exit;

 static boolean pres = false, test=true, connect;

 static Enumeration listekeys;

 static BufferedReader br;

 static Vector client = new Vector();

 public static void main(String [] args) {

 /* detection d'arguments passes en ligne de commande */

 lg = args.length;

 if (lg > 0) {

 for (int i=0;i<lg;i++)

 if (args[i].charAt(0) == '-') {

 try {

 switch(args[i].charAt(1)) {

 case 'p': {

 serv_port = Integer.parseInt(args[i+1]);

 break;

 }

 default:{

 System.out.println("Option inconnue : " + args[i]);

 System.out.println("Options possibles : ");

 System.out.println("-p : definir un port ");

 System.out.println(args[i].charAt(1));

 System.out.println(args[i+1]);

 System.exit(0);

 }

 }

 }

 catch(ArrayIndexOutOfBoundsException e) {

 System.out.println("Argument manquant...");

 System.exit(0);

 }

 }

 }

 else {

 serv_port = 2222;

 }

 /* fin de la detection des arguments */

 table_clients = ControlServer.set_table_clients();

	 table_groupes = ControlServer.setgroups();

 /* creation d'un socket avec le port du server */

 ds = ConnectUDP.dsocket(serv_port);

 dp = ConnectUDP.dpacket(buffer, taille_buff, null, 0);

 /* lancement d'un thread dit de controle, c'est a dire permettant le controle local du server (afficher la table, la remettre a 0,

 * kick un client, ... */

 new Control(table_clients, ds);

 /* boucle infinie de detection d'un nouveau client */

 while(true && !mess_recu.equals("")) {

 /* on recupere la chaine envoyee par le client */

 mess_recu = ConnectUDP.recep(ds, dp);

 str_tok = new StringTokenizer(mess_recu,"@");

 /* recuperation des informations client : login, InetAddress et port*/

 login = "";

 cl_port = dp.getPort();

 cl_adr = dp.getAddress();

 try {

 login = str_tok.nextToken();

 sepa = str_tok.nextToken();

 cmde = str_tok.nextToken();

 }

 catch(java.util.NoSuchElementException j) {

 }

 /*on teste la presence du client ds la table clients*/

 boolean estpres = table_clients.containsKey(login);

 /* s'il est present, c'est qu'il s'est deja identifie au moins une fois */

 if (estpres) {

 recup = (Info_client)table_clients.get(login);

 passcrypte = recup.passwd;

 /* s'il n'est pas connecte (c'est a dire la variable connect de l'objet Info-clients = 0*/

 if (!recup.connect) {

 /* s'il y a un mot de passe, c'est que ke client s'est deja identifie */

 if (!recup.passwd.equals("")) {

 /* si le debut du pass = new, c'est qu'un nouveau client n'a pas encore confirme son nouveau pass */

 if (!recup.passwd.substring(0,3).equals("new")) {

 /* le client n'est pas connecte (booleen connecte = false) */

 if (!recup.connect) {

 /* si le port = 0, c'est une reconnexion */

 if (recup.portcl == 0) {

 /* on place donc le nouveau port et la nouvelle adresse dans l'objet client */

 recup.adrcl = cl_adr;

 recup.portcl = cl_port;

 buffer = new byte[taille_buff];

 fonction = "mdp";

 buffer = fonction.getBytes();

 dpmdp = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpmdp, cl_adr, cl_port);

 }

 /* si le port est different de 0, c'est que le client a demande a se connecter

 * et il vient de rentrer son mot de passe */

 else {

 /* si le mot de passe est correct, on connecte le client en passant la variable connect

 * a true */

 if (recup.passwd.equals(cmde)) {

 recup.connect = true;

 /* la variable cantalk indique quand le client a totalement fini de s'identifier

 * 0 = jamais parle

 * 1 = a rentre son login

 * 2 = a rentre son login et son mot de passe et peut maintenant discuter sur le chat. */

 recup.cantalk = 1;

 buffer = new byte[taille_buff];

 fonction = "ok";

 buffer = fonction.getBytes();

 dpok = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpok, cl_adr, cl_port);

 /* on a accepte le client, on lui a envoye "ok" donc on peut l'ajouter a la bdd */

 table_clients.remove(login);

 table_clients.put(recup.nick, recup);

 }

 /* sinon on envoie un signe comme quoi le pass est faux */

 else {

 buffer = new byte[taille_buff];

 fonction = "badpass";

 buffer = fonction.getBytes();

 dpok = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpok, cl_adr, cl_port);

 }

 }

 }

 }

 /* ici, si le debut du pass est new, c'est ke le client vient d'envoyer sa confirmation de mdp */

 else {

 /* si les 2 pass sont egaux on valide, et on ajoute le client a la table et on le connecte */

 String passtmp = recup.passwd;

 String passtmp2 = passtmp.substring(3, passtmp.length());

 if (passtmp2.equals(cmde)) {

 recup.passwd = cmde;

 recup.connect = true;

 recup.cantalk=1;

 fonction = "ok";

 buffer = fonction.getBytes();

 dpok = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpok, cl_adr, cl_port);

 table_clients.remove(login);

 table_clients.put(recup.nick, recup);

 /* mise a jour du fichier, c'est a dire rajoute une ligne contenant le login et le

 * mot de passe du nouveau client */

 ControlServer.exec("maj", ds);

 }

 /* si les 2 pass sont differents, le client s'est trompe on redemande */

 else {

 recup.passwd = "";

 fonction = "bad2pass";

 buffer = fonction.getBytes();

 dpok = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpok, cl_adr, cl_port);

 }

 }

 }

 /* si le mdp est nul, c'est un nouveau client qui vient d'entrer son 1er pass */

 /* on lui envoie donc la demande de second mdp */

 else {

 recup.passwd = "new" + cmde;

 fonction = "2ndpass";

 buffer = fonction.getBytes();

 dpok = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpok, cl_adr, cl_port);

 }

 }

 /* si le client est deja connecte */

 else {

 /* si le port du client demandeur est different de celui enregistre dans la table (pour le client du

 * meme nom), c'est qu'il existe deja un client connecte avec ce login */

 if (recup.portcl != cl_port) {

 fonction = "connected";

 buffer = fonction.getBytes();

 dpok = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpok, cl_adr, cl_port);

 /* creer un paquet null pour mettre a zero toutes les nouvelles infos, car le client qui a declenche ce message

 * (connected) ne PEUT pas se connecter */

 recup = new Info_client("", "", null, 0, false, 0, 0);

 }

 /* si les 2 ports sont egaux, c'est le bon client */

 else {

 /* si le debut du pass est egal a old, le client vient de donner son ancien mot de passe */

 if (recup.passwd.substring(0,3).equals("old")) {

 /* l'ancien mot de passe est egal a celui rentre : on demande le nouveau */

 if (recup.passwd.substring(3,recup.passwd.length()).equals(cmde)) {

 fonction = "newpass1";

 buffer = fonction.getBytes();

 dpok = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpok, cl_adr, cl_port);

 recup.passwd = "vachanger";

 recup.cantalk = 0;

 }

 else {

 fonction = "badoldpass";

 System.out.println("ancien = " + recup.passwd.substring(3,recup.passwd.length()));

 System.out.println("new = " + cmde);

 buffer = fonction.getBytes();

 dpok = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpok, cl_adr, cl_port);

 }

 }

 /* si le mot de passe ne commence pas par old, soit il n'y a rien soit il est nul pour un changement */

 else {

 /* si le debut du pass est nul, le client vient de donner son nouveau mot de passe */

 if (recup.passwd.equals("vachanger")) {

 recup.passwd = "";

 fonction = "newpass2";

 buffer = fonction.getBytes();

 dpok = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpok, cl_adr, cl_port);

 recup.passwd = "new" + cmde;

 }

 /* si le debut du pass est "new", le client vient de donner sa confirmation de nouveau mot de passe */

 else {

 if (recup.passwd.substring(0,3).equals("new")) {

 /* les 2 nouveaux pass sont egaux, on procede alors au changement du pass */

 if (recup.passwd.substring(3,recup.passwd.length()).equals(cmde)) {

 fonction = "newpass";

 buffer = fonction.getBytes();

 dpok = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpok, cl_adr, cl_port);

 recup.passwd = cmde;

 recup.cantalk=1;

 }

 /* les 2 nouveaux pass sont differents, ont ne peut proceder au changement et on remet l'ancien*/

 else {

 fonction = "badnewpass";

 buffer = fonction.getBytes();

 dpok = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpok, cl_adr, cl_port);

 recup.passwd = "old" + passcrypte;

 }

 }

 }

 }

 }

 }

 }

 /* si le login n'est pas present, on teste si c'est un client qui veut s'identifier pour la 1ere fois

 * avec le mot cle new + login. Sinon c'est une erreur de frappe sur le login ou il n'existe pas (encore)*/

 else {

 if (login.equals("new")) {

 /* on verifie ici que le nouveau login entre n'est pas deja utilise */

 boolean exist = table_clients.containsKey(cmde);

 if (!exist) {

 /* les conditions remplies, on peut creer un nouvel objet avec l'adr du client, son port, la variable connect a false

 * la variable cantalk a 0, et un pass vierge car il n'en a encore rentre aucun */

 info_cl = new Info_client(cmde, "", cl_adr, cl_port, false, 0,0);

 table_clients.put(info_cl.nick, info_cl);

 // penser ici a mettre le fichier client a jour

 buffer = new byte[taille_buff];

 fonction = "mdp";

 buffer = fonction.getBytes();

 dpmdp = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpmdp, cl_adr, cl_port);

 }

 /* si le login existe, on envoie un message au client */

 else {

 buffer = new byte[taille_buff];

 fonction = "exist";

 buffer = new byte[taille_buff];

 buffer = fonction.getBytes();

 dpexist = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpexist, cl_adr, cl_port);

 recup = new Info_client("", "", null, 0, false, 0,0);

 }

 }

 /* si le login n'est pas new le login est mauvais */

 else {

 buffer = new byte[taille_buff];

 fonction = "badlog";

 buffer = new byte[taille_buff];

 buffer = fonction.getBytes();

 dpbadlog = ConnectUDP.dpacket(buffer, buffer.length, cl_adr, cl_port);

 ConnectUDP.envoi(ds, dpbadlog, cl_adr, cl_port);

 recup = new Info_client("", "", null, 0, false, 0,0);

 }

 }

 /***/

 // fin de la procedure de detection client

 //TestClient(login, cl_adr, cl_port);

 GregorianCalendar day = new GregorianCalendar();

 /* dans chaque ojbet client, la variable cantalk est passe a 2 apres un 1er passage ici, pour etre sur que le pass ou des infos

 * de connection ne s'affiche */

 if (recup.cantalk == 2) {

 /* on teste si le client veut sortir ou pas */

 if (cmde.equals("/exit")) {

 date = day.getTime().toString();

 time = date.substring(11,20);

 renvoi_exit = login + " has exit at " + time;

 System.out.println(renvoi_exit);

 buffer = renvoi_exit.getBytes();

 /* creation d'un nouveau packet avec la chaine a renvoyer */

 dp = ConnectUDP.dpacket(buffer, buffer.length, null, 1);

 /* boucle qui envoit la chaine annoncant la sortie d'un client a chacun des clients connectes */

 listekeys = table_clients.keys();

 for (ind=0; ind<table_clients.size(); ind++) {

 cle = (String)listekeys.nextElement();

 desti = (Info_client)table_clients.get(cle);

 adr_dest = (InetAddress)desti.adrcl;

 dest_port = desti.portcl;

 if (dest_port != 0)

 ConnectUDP.envoi(ds, dp, adr_dest, dest_port);

 }

 /* on enleve le client de la bdd info_client */

 table_clients.remove(login);

 obj_exit = new Info_client(login, recup.passwd, null, 0, false, 0,0);

 table_clients.put(obj_exit.nick, obj_exit);

 }

 /* dans les autres cas, un message normal ou une commande */

 else {

 /* ne rien faire si la chaine envoyee est nulle */

 if (!cmde.equals("")) {

 /* test afin de reconnaitre une commande a l'aide du caracteres / (slash) */

 if (cmde.charAt(0) != '/') {

 System.out.println(login + "> " + cmde);

 date = day.getTime().toString();

 time = date.substring(11,20);

 renvoi = time + " " + login + "> " + cmde;

 buffer = renvoi.getBytes();

 dp = ConnectUDP.dpacket(buffer, buffer.length, null, 1);

 /* c'est un message normal donc on l'envoie a tout le monde */

 listekeys = table_clients.keys();

 for (int i=0; i<table_clients.size(); i++) {

 cle = (String)listekeys.nextElement();

 desti = (Info_client)table_clients.get(cle);

 login = desti.nick;

 adr_dest = desti.adrcl;

 dest_port = desti.portcl;

 if (dest_port != 0)

 ConnectUDP.envoi(ds, dp, adr_dest, dest_port);

 }

 }

 /* il s'agit ici du traitement de la chaine de caracteres contenant l'intitule de la

 * commande, le ou les arguments, le login de l'expediteur et le message */

 else {

 try {

 k=0;

 /* chaque "partie" (login, argument(s), commande,...)est separee par un espace.

 * Ainsi on a 3 boucles while qui recupere chacun des parametres. Puis on reduit

 * au fur et a mesure les chaines avec substring jusqu'a obtenir les 3 parametres

 * dans des chaines separees */

 while(cmde.charAt(k) != ' ') {

 commande = commande + cmde.charAt(k);

 k++;

 }

 argu = cmde.substring(k+1,cmde.length());

 k=0;

 while(argu.charAt(k) != ' ') {

 argument = argument + argu.charAt(k);

 k++;

 }

 message = argu.substring(k+1, argu.length());

 /* ensuite on lance l'interpretation de la commande */

 Cmde.traitement(ds, login, commande, argument, message);

 }

 catch(java.lang.StringIndexOutOfBoundsException e) {

 if (commande.equals("/msg")) {

 System.out.println("usage de /msg : ");

 System.out.println("/msg dest message");

 System.out.println("/msg dest1+dest2+dest3... message");

 }

 else {

 Cmde.traitement(ds, login, commande, argument, message);

 login = "";

 commande = "";

 argument = "";

 message = "";

 }

 }

 message = "";

 argu = "";

 }

 }

 /* creation d'un nouveau paquet vierge pour reception */

 buffer = new byte[taille_buff];

 dp = ConnectUDP.dpacket(buffer, taille_buff, null, 1);

 }

 }

 if (recup.cantalk == 1)

 recup.cantalk = 2;

 }

 }

}

/* Thread d'attente d'entree au clavier pour la gestion interne du serveur (commande, sortie, kick, ...) */

class Control extends Thread {

 DatagramSocket ds;

 DatagramPacket dp;

 int taille_buff = 10240, sport, test2;

 String adrs, serv_quit, command="", test1, cle, kicke;

 InetAddress S_ia;

 Hashtable info;

 BufferedReader kbr;

 byte[] buffer = new byte[taille_buff];

 Info_client desti, test;

 int dest_port;

 InetAddress adr_dest, test3;

 Enumeration listekeys;

 public Control(Hashtable tbl, DatagramSocket sock) {

 info = tbl;

 ds = sock;

 start();

 }

 public void run() {

 /* boucle infinie qui attend les entrees clavier sur le serveur */

 while(true) {

 System.out.print("/");

 kbr = new BufferedReader(new InputStreamReader(System.in));

 try {

 command = kbr.readLine();

 }

 catch(java.io.IOException e) {

 System.out.println("erreur IO");

 }

 ControlServer.exec(command, ds);

 }

 }

}

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

