

Journal Conception d’un circuit intégré avec OpenRoad

Posté par jtremesay (site web personnel) le 31 août 2025 à 18:00.
Licence CC By‑SA.

Étiquettes :

	openroad

	picorv32

	eda

[image:]

Sommaire

	Installation de OpenRoad

	Installation de Openroad Flow

	Le design : un processeur PicoRV32

	
Configuration du flot
	
Création du design
	
Configuration pour implémenter le design avec la techno ASAP7
	Config.mk

	Constraint.sdc

	Bref

	
Exécution du flot
	Synthèse logique

	Floorplan

	Placement

	Arbre d'horloge

	Routage

	Résultat

	Conclusion

Bonjour, Nal !

Y'a quelques temps, je t'avais expliqué comment faire un circuit integré avec QFlow. Aujourd'hui, je vais te montrer comment faire la même chose avec OpenRoad.

Le projet OpenRoad (“Foundations and Realization of Open, Accessible Design”) vise à simplifier la conception de circuits intégrés. Ils développent l'outil OpenROAD qui à partir d'une netlist s'occupe du P&R et cie pour générer un GDSII (voir journal précédent) ainsi qu'un flot RTL to GDSII complet.

Installation de OpenRoad

ahahahahah. Souffre. RTFM

Mais globalement,

	Debian 11 / Ubuntu 20.04, 22.04: ils ont un dépôt, RTFM

	compilation via Docker: RTFM

	compilation depuis les sources: RTFM

	
nix flake. Cadeau, mon flake.nix :

{
 inputs = {
 nixpkgs.url = "github:NixOS/nixpkgs/nixos-25.05";
 openroad = {
 type = "git";
 url = "https://github.com/The-OpenROAD-Project/OpenROAD";
 submodules = true;
 };
 yosys = {
 type = "git";
 url = "https://github.com/The-OpenROAD-Project/yosys";
 submodules = true;
 };
 flake-utils.url = "github:numtide/flake-utils";
 };

 outputs =
 {
 self,
 nixpkgs,
 flake-utils,
 openroad,
 yosys,
 ...
 }:
 flake-utils.lib.eachDefaultSystem (
 system:
 let
 pkgs = import nixpkgs {
 inherit system;
 };
 in
 {
 devShells.default = pkgs.mkShell {
 buildInputs = [
 openroad.packages.${system}.default
 yosys.packages.${system}.default
];
 packages = with pkgs; [
 fish
 nil
 nixd
 nixfmt-rfc-style
 time
 klayout
 verilator
 perl
 python3
 python3Packages.pandas
 python3Packages.numpy
 python3Packages.firebase-admin
 python3Packages.click
 python3Packages.pyyaml
 python3Packages.yamlfix
];
 shellHook = ''
 exec ${pkgs.fish}/bin/fish
 '';
 };
 }
);
}

J'ai préféré passé par nix parce que nix develop et pouf j'ai un shell avec un tous les outils nécessaires sans avoir à créer un AUR pour Arch (I use Arch, btw) ou configurer docker pour rendre accessible le projet au containeur contenant les outils.

Enfin bref, normalement maintenant tu dois avoir accès à openroad :

$ openroad
OpenROAD GITDIR-NOTFOUND
Features included (+) or not (-): +GPU +GUI +Python
This program is licensed under the BSD-3 license. See the LICENSE file for details.
Components of this program may be licensed under more restrictive licenses which must be honored.
openroad>

Installation de Openroad Flow

Maintenant, on récupère le dépôt du flot :

$ git clone https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts.git openroad-flow-scripts

Le design : un processeur PicoRV32

Cette fois-ci, plutôt que de faire un Adder, on va faire un processeur RISC-V, le PicoRV32.

PicoRV32 is a CPU core that implements the RISC-V RV32IMC Instruction Set. It can be configured as RV32E, RV32I, RV32IC, RV32IM, or RV32IMC core, and optionally contains a built-in interrupt controller.

$ git clone https://github.com/YosysHQ/picorv32.git picorv32

Configuration du flot

Normalement, on est censé mettre son design dans openroad-flow-scripts/flow/designs/src/mondesign/ et la configuration dans openroad-flow-scripts/flow/designs/<techno>/mondesign/, puis faire un coup de cd openroad-flow-scripts/flow/; make DESIGN_CONFIG=designs/<techno>/mondesign/config.mk pour faire des chocapics.

Mais je trouve ça assez bof de bosser dans le dépôt git d'un autre projet. Du coup on va foutre notre bazar ailleurs

Création du design

On va pas s'embêter et on crée juste l'arborescence attendue par le flot et on symlink les sources du processeur.

$ mkdir -p designs/src/picorv32
$ ln -s ../../../picorv32/picorv32.v designs/src/picorv32/

Configuration pour implémenter le design avec la techno ASAP7

ASAP7 est une bibliothèque de cellules standard opensource pour la technologie de fabrication de circuits intégrés en 7 nm.

Création de la configuration du design:

$ mkdir -p designs/asap7/picorv32
$ nvim designs/asap7/picorv32/config.mk
$ nvim designs/asap7/picorv32/constraint.sdc

Config.mk

La configuration du flot se fait par des variables d'environnement défini dans un Makefile.

RTFM pour la liste des variables disponibles.

Nom du design
export DESIGN_NAME = picorv32

Nom de la plateforme technologique de destination
export PLATFORM = asap7

Fichiers sources
export VERILOG_FILES = $(DESIGN_HOME)/src/$(DESIGN_NICKNAME)/$(DESIGN_NAME).v

Fichier de contraintes temporelles
export SDC_FILE = $(DESIGN_HOME)/$(PLATFORM)/$(DESIGN_NICKNAME)/constraint.sdc

Densité du circuit. (100 = pas d'espace libre)
Réduire la valeur pour simplifier le placement et le routage.
Augmenter la valeur pour réduire la taille du circuit.
export CORE_UTILIZATION = 70

Forme du circuit. 1 pour carré
export CORE_ASPECT_RATIO = 1

Taille des marges
export CORE_MARGIN = 5

Compacité du placement (1.0 un seul blob de cellules)
Réduire la valeur pour disperser les cellules et améliorer le routage
Augmenter la valeur pour regrouper les cellules et avoir de meilleures performances (In'ch Allah).
export PLACE_DENSITY = 0.7

Configuration du CPU
RTFM https://github.com/YosysHQ/picorv32?tab=readme-ov-file#verilog-module-parameters
export VERILOG_TOP_PARAMS = \
 BARREL_SHIFTER 1 \
 COMPRESSED_ISA 1 \
 ENABLE_MUL 1 \
 ENABLE_DIV 1 \
 ENABLE_IRQ 1

Constraint.sdc

On crée un fichier de contraintes temporelles afin de s'assurer que le design respecte les contraintes de temporelles (si si, je vous jure). Aka, si je donne une horloge de 1GHz à mon processeur, est-ce que tous les signaux internes du processeur arrivent à destination à temps ?

current_design riscv_top

set clk_name clk
set clk_port_name clk
set clk_period 1000
set clk_io_pct 0.125

set clk_port [get_ports $clk_port_name]

create_clock -name $clk_name -period $clk_period $clk_port

set non_clock_inputs [all_inputs -no_clocks]
set_input_delay [expr $clk_period * $clk_io_pct] -clock $clk_name $non_clock_inputs
set_output_delay [expr $clk_period * $clk_io_pct] -clock $clk_name [all_outputs]

Bref

Normalement, là, votre dossier ressemble à ça :

$ tree
├── designs
│ ├── asap7
│ │ └── picorv32
│ │ ├── config.mk
│ │ └── constraint.sdc
│ └── src
│ └── picorv32
│ └── picorv32.v -> ../../../picorv32/picorv32.v
├── openroad-flow-scripts
└── picorv32

Exécution du flot

$ export DESIGN_HOME=$PWD/designs
$ export WORK_HOME=$PWD/work
$ make -C openroad-flow-scripts/flow DESIGN_CONFIG=$DESIGN_HOME/asap7/picorv32/config.mk

Maintenant vous pouvez allez vous faire un café. Vous avez probablement le temps de passer au torréfacteur prendre du café vert, rentrer chez vous, le torréfier au four, le moudre, puis préparer un espresso pendant que le flot s'exécute.

Dans le dossier work, vous devriez voir les résultats de l'exécution du flot, notamment :

	
work/logs/asap7/picorv32/base/ : les journaux de l'exécution du flot

	
work/reports/asap7/picorv32/base/ : les rapports sur notre design

	
work/results/asap7/picorv32/base/ : les résultats de l'exécution du flot

Synthèse logique

Nous avons un beau bébé de presque 19k portes logiques et d'une surface combinée de 2225 chaipasquoi² (μm² ?)

=== picorv32 ===
Number of wires: 18804
Number of wire bits: 19186
Number of public wires: 282
Number of public wire bits: 664
Number of ports: 27
Number of port bits: 409
Number of memories: 0
Number of memory bits: 0
Number of processes: 0
Number of cells: 18718
 AND2x2_ASAP7_75t_R 489
 AND3x1_ASAP7_75t_R 668
 AND4x1_ASAP7_75t_R 172
 AND5x1_ASAP7_75t_R 56
 AO211x2_ASAP7_75t_R 9
 AO21x1_ASAP7_75t_R 1767
 AO221x1_ASAP7_75t_R 211
 AO222x2_ASAP7_75t_R 32
 AO22x1_ASAP7_75t_R 91
 AO31x2_ASAP7_75t_R 6
 AO32x1_ASAP7_75t_R 163
 AO33x2_ASAP7_75t_R 2
 AOI211x1_ASAP7_75t_R 45
 AOI21x1_ASAP7_75t_R 187
 AOI221x1_ASAP7_75t_R 12
 AOI22x1_ASAP7_75t_R 13
 BUFx2_ASAP7_75t_R 1706
 BUFx3_ASAP7_75t_R 4
 DFFHQNx1_ASAP7_75t_R 2382
 FAx1_ASAP7_75t_R 39
 HAxp5_ASAP7_75t_R 327
 INVx1_ASAP7_75t_R 1669
 NAND2x1_ASAP7_75t_R 2107
 NAND3x1_ASAP7_75t_R 17
 NOR2x1_ASAP7_75t_R 436
 NOR3x1_ASAP7_75t_R 9
 OA211x2_ASAP7_75t_R 1668
 OA21x2_ASAP7_75t_R 1990
 OA222x2_ASAP7_75t_R 75
 OA22x2_ASAP7_75t_R 48
 OA31x2_ASAP7_75t_R 19
 OA33x2_ASAP7_75t_R 5
 OAI21x1_ASAP7_75t_R 292
 OAI22x1_ASAP7_75t_R 119
 OR2x2_ASAP7_75t_R 249
 OR3x1_ASAP7_75t_R 1058
 OR4x1_ASAP7_75t_R 135
 OR5x1_ASAP7_75t_R 52
 TIELOx1_ASAP7_75t_R 1
 XNOR2x2_ASAP7_75t_R 190
 XOR2x2_ASAP7_75t_R 198

Chip area for module '\picorv32': 2225.345400

Floorplan

Le floorplan de notre design. On peut voir la powergrid au centre du die.

[image: Floor plan de notre design. Au centre, on peut voir la powergrid]

Placement

Les portes logiques placés sur le die. On peut voir que le placement des IO en bordure du die est un peu caca. Cela mériterai de faire un script qui place manuellement les IO.

[image: Placement des portes logiques]

Arbre d'horloge

L'arbre d'horloge de notre design. L'arbre d'horloge est responsable de la distribution du signal d'horloge à toutes les portes logiques afin d'assurer la bonne synchronisation de notre circuit.

[image: Arbre d'horloge de notre design]

Routage

Le routage de notre design. Le routage est responsable de la connexion des portes logiques entre elles et de la distribution des signaux à travers le circuit.

[image: Routage de notre design]

Résultat

Bon ben voila, notre picorv32, prêt à être envoyé chez un fondeur pour fabrication :

[image: Résultat de notre design]

Conclusion

OpenRoad, c'est cool, ça permet d'avoir rapidement et facilement un truc qui fonctionne. À partir de là, y'a plus qu'à itérer pour améliorer la config et optimiser le design.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/b7e0c8d64e3d678967f2194f88a0987b6a5aca152b0d93a80ae35374.png
B
= S = e L by £ =
2 o e B WH =
Fo EaEmR T = e S =
= = i
I e i o
= 3 = =
e = e e = =
e CE e e S =
ik =i = S, £ ATy
e Eimeeaie o =
e L = =) =
o x: i e e = 2
S AL
S e
e e ot S 5 3
22 = 4 = oz e -
i S 2= e T
=3 B o b JE A oD ;@* e
it = ey
e EREia
S = o
= i e SR e
= i i P tntE B
= i S SR | L s
) o - S
= = £ Rt
= R e =3 e 2
- G £F = Fmasa
= - T S = i 5 _.~:: e
= = A BTy T R L =4 Rt !
St = = =
o = e
e £ e : S i =
= = = Fos i3
F s e e = =
= o =]
GEE e R e e — A=l
L= R = SN s i
Za SEE R R Foinpal o =
=
e ErEaana £l el e
e e b SR Sttt
= o iz} ¥-i ﬁmﬂ TR i oo
Z e e e i Egets
S R ey = -
= oy o B e S
ek = = s
e S e e =
& = SR ey i = EE
=
= = e
%’fﬁ G RIS E oS BEs SR =]
i e =

EPUB/ed4d8d41ddd2e482d4ebf459261e4d123bff32ec9ef36d644c6dc841.png
L

et

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/7fe7feeb9da23ac678af56d7d3825e6ecc6869217a2d7af3d5227475.png
S
=

DG
ey
&=
—

§

H Iy :ﬁm& i hm_mapwﬁ mwmrp—*quﬁ
W el

00 Tt =$ hf__m__ Eﬁmi
H__z %j EF_D.I—WE _;:b b =ew=

w&_ i] i i

. b o's? o Ly h__m__ :,:.:m I 1__ | %
s aT 1 ol | A P %
Highios LS T e Tt o gl

=__;.ﬁ___ f% Hod uldyd o
g%?ﬁg iy 00

EPUB/979f6fba89510cdd537f9464d9f1751d87840b8c22d9661ed92ec5b3.png

EPUB/069cff9ffcb730ceb127df446885156b827cf9bd0f89805c1a96c7ba.png

EPUB/avatars062048000avatar.png

