

Journal Verilog && récursivité(récursivité(récursivité(ERROR: STACK OVERFLOW

Posté par jtremesay (site web personnel) le 05 mai 2020 à 18:34.
Licence CC By‑SA.

Étiquettes :

	verilog

[image:]

Cher journal,

Hier, j'ai découvert que l'on pouvait faire du code récursif en Verilog.

Le verilog, qu'est-ce que c'est que quoi ?

Verilog est un vieux langage de description matériel. Il sert à modéliser des circuits qui pourront être ensuite simulé et être implémenté sur un FPGA ou en ASIC.

En guise d'exemple, voici un petit module qui fait clignoter une DEL :

`define CLOCK_FREQUENCY 25000000 // Number of clock tick in 1 second - 25Mhz
`define LED_TICKS_COUNT `CLOCK_FREQUENCY // Switch the LED state every second

module LedBlink(o_led, i_clock, i_nreset);
 output reg o_led;
 input i_clock, i_nreset;

 reg [24:0] r_counter; // 25 bits counter, up to 33,554,341
 always @(posedge i_clock, negedge i_nreset) begin
 if (!i_nreset) begin
 // Reset the counter and switch off the LED
 r_counter <= 0;
 o_led <= 0;
 end else if (r_counter == `LED_TICKS_COUNT) begin
 // Reset the counter and switch the LED state
 r_counter <= 0;
 o_led <= !o_led;
 end else begin
 // Update the counter
 r_counter <= r_counter + 1;
 end
 end
endmodule

Le code ci dessus est équivalent à ce circuit :

[image: Représentation graphique du module LedBlink]

Paramètres

Il est possible de rendre les modules plus génériques via l'utilisation de paramètres dont la valeur est définissable lors de instanciation du module. Par exemple, au lieu d'avoir un module qui fait des additions sur 8 bits et un autre sur 16 bits, il est possible d'en avoir qu'un seul dont la taille est générique :

module Adder(z, a, b);
 // Paramètre permettant de définir la taille de l'adder
 parameter WIDTH = 8; // Valeur par défaut

 // La taille des entrées/sorties dépend du paramètre WIDTH
 output [WIDTH - 1:0] z;
 input [WIDTH - 1:0] a, b;

 assign z = a + b;
endmodule

module Foo(z1, z2, a, b);
 output [7:0] z1;
 output [15:0] z2;
 input [15:0] a, b;

 // Instantiation de l'adder en utilisant la valeur par défaut du paramètre
 Adder adder8(.z(z1), .a(a[7:0]), .b(b[7:0]));

 // Instantiation de l'adder en choississant la valeur du paramètre
 Adder #(.WIDTH(16)) adder16(.z(z2), .a(a), .b(b));
endmodule

[image: Diagramme montrant les adders 8 et 16 bits]

La récursivité avec un exemple à la con

Il est possible de créer une nouvelle instance d'un module en lui même et de jouer avec les paramètres pour définir la condition d'arrêt.

Nous allons prendre l'exemple d'un registre à décalage. Une manière de l'écrire serait de la manière suivante :

 module ShiftRegister(q, d, clk);
 parameter WIDTH = 8;

 output reg q;
 input d, clk;

 reg [WIDTH - 2:0] data;
 always @(posedge clk) begin
 {q, data} <= {data, d};
 end
 endmodule

[image: Diagramme du registre à décalage]

Mais pourquoi faire simple et propre quand on peut utiliser de la récursion ? Mr Olivier Cogis, mon professeur d'algorithmie, disait qu'une forêt est une forêt vide ou un arbre et une forêt. Réutilisons ce principe pour définir notre registre à bascule :

 module ShiftRegister(q, d, clk);
 parameter WIDTH = 4;

 output q;
 input d, clk;

 if (WIDTH <= 0) begin
 // Forêt vide
 assign q = d; // passthrough
 end else begin
 // Un arbre
 reg data;
 always @(posedge clk) begin
 data <= d;
 end

 // Une forêt
 ShiftRegister #(.WIDTH(WIDTH - 1)) sr(.q(q), .d(data), .clk(clk));
 end
 endmodule

[image: Diagramme du registre à décalage recursif]

Multiplexeur

Bon, je ne vais te mentir, l'exemple ci dessus n'est pas vraiment une bonne pratique. Mais il a le mérite d'être pour introduire le sujet. Par contre, j'ai trouvé un cas où la récursion est bien pratique : l'écriture d'un multiplexeur, mux de son petit nom.

[image: Un mux 2]

Le mux de base, le mux 2, possède 2 entrées (d'où le nom), un sélecteur S et d'unes ortie Z. Quand S vaut 0, on retrouve la valeur de A sur la sortie Z sinon celle de B. Sa table de vérité est

B A S | Z

X 0 0 | 0
X 1 0 | 1
0 X 1 | 0
1 X 1 | 1

que l'on peut simplifier en

S | Z

0 | A
1 | B

Bref, c'est l'opérateur ternaire de l'électronique (Z = S ? B : A).

En chaînant les mux2 sous forme d'arbre, il est possible d'obtenir des multiplexeurs plus grands, tel que le mux4 :

[image: Diagramme d'un mux 4]

et le mux 8 :

[image: Diagramme d'un mux 8]

Comme tu est très perspicace, tu auras remarqué que un mux 2^S est constitué de 2 mux 2^(S - 1) et un mux 2. Le mux 4 (S = 2) est ainsi constitué de 2 mux 2 reliés par un mux 2 et le mux 8 (S = 3) est constitué de 2 mux 4 relié par un mux 2.

module Mux(z, d, s);
 parameter S = 3;

 output z;
 input [2 ** S - 1:0] d;
 input [S - 1:0] s;

 if (S == 1) begin
 assign z = s ? d[1] : d[0];
 end else begin
 wire z1, z2;
 Mux #(.S(S - 1)) mux1(.z(z1), .d(d[2 ** (S - 1) - 1:0]), .s(s[S - 2:0]));
 Mux #(.S(S - 1)) mux2(.z(z2), .d(d[2 ** S - 1:2 ** (S - 1)]), .s(s[S - 2:0]));
 assign z = s[S - 1] ? z2 : z1;
 end
endmodule

[image: Diagramme du mux récursif]

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/bdd345cb728ca6d6181414f0363250dcdab0b97c6f0360f5faa8c2d1.png
ck >

el

sr

data_reg
c

data_reg
c

clk.

sr

b °

RTL_REG

data_reg
c

el

sr

sr

b °

RTL_REG

data_reg ®
clk
€ & d a

D

RTLREG ShiftRegister_parameterized3

ShiftRegister__parameterized2

ShiftRegister__parameterizedl

ShiftRegister__parameterized0

EPUB/aa28c62a6e349613089a74d63841a553c51d44b19c7782522a2a5128.png
i_nreset [

- counter i r_counter_reg[24:0]

CIR

r_counter0_i 5=256101111201011 1100001000000 _10[24:0]

S=gefaur_11[24:0]

n
0[24:0]
10[24:0]
RTL_ADD S124:0

0[24:0]

] o_led_reg

CIR
c

CE Q ™ o_led
D

RTL_MUX
- RTL_REG_ASYNC

o_led.

i_clock [

Al24:0] O

| RTL_REG_ASYNC
RTL_ROM =

o_led0 i
o

RTLINV

EPUB/210aa7c1d91cbb8c5ec279dfd1380b87475cc453214d9495dcb9144d.png
< m 0O A @m B O T

EPUB/05af5ca7ea2ef7653d224f62335a4182c2c1a1ab01880eeea67f4ad8.png

EPUB/37f809ec15f7888424d26219456356bad733d032011fa4ef66be1ee0.png
clk

a_reg

data_reg[6:0]

RTL_REG

RTL_REG

EPUB/a58668eb12ca9c02c70170aaa01bb1a1623d7a158edd0a28cb74ee3d.png
Se

EPUB/a516e3f4410a2aabfab9b32346c2ee5180f72254b70b22159e5d3765.png
adder8

RTL_ADD

RTL_ADD

‘Adder_parameterized0

21[7:0]

22[15:0]

EPUB/666831a0916e182e02d595cb2e4ba1e6c4bbb47096dc666db54b7045.png
74 d(3:0]

mux1

32 d(1:0]

zi
w10
muxl a0 i
w10
somraar_11 ° z g
w10 =
® le
somraar_11 P RTL MUX

RTL_MUX

Mux_parameterizedl

S-detaur 11

ST RTL_MUX

Mux_parameterizedl

Mux_parameterized0

32 d(1:0]

0 10
S-detaur 11

o 2

S-detaur 11 RTL_MUX

RTL_MUX

Mux_parameterizedl

s-1w 10
S-detaur 11

ST RTL_MUX

Mux_parameterizedl

Mux_parameterized0

RTL_MUX

EPUB/avatars062048000avatar.png

