

Journal Rapport signal bruit et filtre passe-haut

Posté par Krunch (courriel, site web personnel) le 31 mai 2013 à 14:17.
Licence CC By‑SA.

Étiquettes :

	dataviz

	statistiques

	meta

	dlfp

[image:]

Sommaire

	
Implémentation

	
Conclusion

	
Future directions

	
Prior art

< Krunch> grima: tu as encore le temps de lire dlfp toi ?
< grima> avec un mois de retard souvent et je lis que les truc vraiment inter^W^W^Wplus gros trolls
< Krunch> en considérant que les gros trolls font 90% du contenu en terme de texte je suis pas sûr que tu gagnes du temps
< Krunch> oh oui, faudrait que je compte combien de mots il y a dans les commentaires de journaux à plus de 100 commentaires vs les autres

Implémentation

Bon bah ça tombe bien j'avais rien de prévu aujourd'hui. Donc on commence par recycler mon journals.pl de l'autre fois pour récupérer tous les URLs de journaux :

#!/usr/bin/perl -w
use strict;
use feature 'say';
use utf8;
use HTML::Parser;
use Date::Parse;
use Time::Local;

prior art:
https://linuxfr.org/users/spack/journaux/les-journaux-linuxfr-org-les-moins-biens-notes-de-la-semaine-44-2012#comment-1405344

We are trying to extract the URL, date/time and score from this:
#
<article class="node hentry score-1 diary">
<h1 class="entry-title">

</h1>
<div class="meta">
<time class="updated" datetime="2002-10-17T09:26:50+02:00">
</time>
</div>
<meta content="UserLikes:22" itemprop="interactionCount">
<meta content="UserComments:40" itemprop="interactionCount" />
</article>

my %current; # with keys 'url', 'time', 'score' and 'comments'

sub debug {
 say STDERR @_ if undef;
}

sub in_article {
 my ($tag, $attrs, $self) = @_;
 if ($tag eq 'a') {
 return unless defined $attrs->{'href'};
 my $url = $attrs->{'href'};
 return unless $url =~ m|^/users/[^/]+/journaux/[^/]+$|;
 debug 'parsing url';
 $current{'url'} = $url;
 } elsif ($tag eq 'time') {
 return unless defined $attrs->{'class'};
 return unless defined $attrs->{'datetime'};
 return unless $attrs->{'class'} eq 'updated';
 debug 'parsing time';
 $current{'time'} = str2time($attrs->{'datetime'});
 } elsif ($tag eq 'meta') {
 return unless defined $attrs->{'content'};
 if ($attrs->{'content'} =~ /^UserLikes:(-?\d+)$/) {
 $current{'score'} = $1;
 } elsif ($attrs->{'content'} =~ /^UserComments:(\d+)$/) {
 $current{'comments'} = $1;
 }
 }
}

sub end_article($$) {
 my ($tag, $self) = @_;
 return unless $tag eq 'article';

 debug 'leaving article';

 $self->handler(end => undef);
 $self->handler(start => \&main_start, 'tagname,attr,self');

 printf "%4d %4d %d %s\n",
 $current{'score'},
 $current{'comments'},
 $current{'time'},
 $current{'url'};
 undef %current;
}

sub main_start($$$) {
 my ($tag, $attrs, $self) = @_;
 return unless $tag eq 'article';
 return unless defined $attrs->{'class'};
 return unless grep { /^diary$/ } split /\s+/, $attrs->{'class'};

 debug "entering article";

 $self->handler(start => \&in_article, 'tagname,attr,self');
 $self->handler(end => \&end_article, 'tagname,self');
}

my $parser = HTML::Parser->new(
 utf8_mode => 1,
 start_h => [\&main_start, 'tagname,attr,self']
);
$parser->parse_file($_) for @ARGV;

Ça s'utilise comme ceci :

$ seq 42 -1 1 |
> while read i
> do ./journals.pl \
> <(wget -U 'DLFP Troll Analyser 0.1' -O - \
> http://linuxfr.org/journaux?page=${i}) |
> tee journaux.${i} ; sleep 3
> done

Vingt minutes plus tard on peut compter les mots :

$ cat journaux.* | while read score comments time url
> do
> echo -n "$score $comments $time $url "
> wget -U 'DLFP Troll Analyser 0.1' -O - http://linuxfr.org${url} |
> wc -w ; sleep 3
> done | tee journaux.wc

Une fois qu'on s'est rendu compte que ça boucle infiniment et qu'on a supprimé les trucs en trop, yapluka agréger :

$ awk '{ if ($1 > 0) { p += $5 } else { np += $5 } if ($2 >= 100) { t += $5 } else { nt += $5 } } END { printf("%d troll words\n%d non troll words\n%d relevant words\n%d irrelevant words\n", t, nt, p, np) }' journaux.wc
30262941 troll words
105888259 non troll words
47892521 relevant words
88258679 irrelevant words

Conclusion

On constate donc que mon estimation était incorrecte puisque seul ~28% du contenu des journaux fait partie d'un journal ayant plus de cent commentaires tandis que les journaux ayant un score strictement positif forment ~54% de ce qui peut être lu dans les journaux.

Future directions

Évidemment mon implémentation du comptage de mots laisse à désirer puisque ça prend en compte tout le HTML, pas juste le texte des commentaires.

Pour ce qui est de la discrimination basé sur le score du journal, ça ne tient pas compte du fait que tous les « vieux » journaux ont un score de zéro.

La définition de « gros troll » pourrait être raffinée pour utiliser d'autres métriques que le nombre de commentaires ou le score du journal.

Gof suggère un réseau de neurones pour déterminer la recette d'un +10.

Prior art

https://linuxfr.org/users/krunch/journaux/dlfp-social-network

https://linuxfr.org/users/krunch/journaux/xp-analyzer-10

https://linuxfr.org/statistiques

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars472020000avatar.gif

