

Journal Bref, j'ai fait un script python.

Posté par LeBouquetin (site web personnel, Mastodon) le 20 novembre 2011 à 12:55.
Licence CC By‑SA.

Étiquettes :

	debian

[image:]

Bref c'était un dimanche et je moulais sur mon PC.

Je moulais tranquillement sur mes sites habituels – xhamster.com linuxfr.org, slashdot.org, quand tout à coup est apparu un journal sur LinuxFR : Bref, j'ai fait un flux atom de bref.

Alors j'me suis dit : "Bref, j'ai bien cette série, il faut que je fais un script pour récupérer directement les épisodes et que je les mets sur ma freebox". Je sais, je suis mauvais en conjugaison, mais il fallait quand même que je les mets sur ma freebox. Bref.

J'ai donc récupéré le flux Atom et j'ai tenté de parser le flux pour récupérer les url des épisodes en HD. La HD, c'est mieux, parce que t'as plus de pixel à l'écran, et vu que j'ai un projecteur dans mon salon, bah les flux HD c'est mieux. Bref.

Le problème, c'est que mon colloc avait pas croqué la pomme depuis 6 mois et que là il voulait que je vais lui acheter des capotes à la pharmacie. Et puis en fait, parser le flux Atom, c'était plus sioux que de parser directement le flux XML original, qui est utilisé dans le script de Luke SKy. Bref, j'ai décidé de parser directement le flux XML original.

Bon. A ce moment-là, j'avais juste le flux des vidéos en HD, mais j'en faisais rien. Il était déjà tard. Et c'est là que je me suis demandé comment télécharger les flux RTMP parce que moi je voulais télécharger les épisodes, pas les regarder en direct. Alors j'ai cherché un peu et j'ai découvert l'outil rtmpdump. J'ai regardé l'aide et j'ai trouvé que ça serait facile de télécharger un épisode à partir de son url rtmp:// :

/usr/bin/rtmpdump -r '<url_rtmp_de_l_episode>' -o '<chemin_du_fichier_de_sortie>'

Là, j'avais les fichiers sur mon serveur local, une Debian qui va bien et qui tourne sur du matériel plutôt économe en énergie : une petite Eee Box. Une tâche cron pour lancer la vérification toutes les 6h, pour pas louper un épisode :

Verifier et telecharger les episodes de "bref" chaque jour a 3h, 9h, 15h et 21h
0 3,9,15,21 * * * python /opt/perso/bref/dl.bref.py 2>&1 1>>/var/log/dl.bref.log

Il restait plus qu'à les pousser sur la freebox, pour pouvoir les mater ensuite en grand écran. J'ai donc décidé d'utiliser le client ftp en ligne de commande ncftpput :

ncftpput -u freebox -p <mon_mot_de_passe> <ip_de_la_freebox> '/Disque dur/Enregistrements/Bref/' <chemin_du_fichier_cree_avec_rtmpdump>

Bon, c'était nickel, ça marchait bien, mais je savais pas quand un nouvel épisode était disponible. Je récupérais les épisodes automatiquement, mais sans le savoir. Je perdais l'intérêt de l'automatisation. Bref.

J'ai décidé de m'envoyer des alertes parce que comme ça je saurais quand un nouvel épisode était disponible. J'ai décidé d'utiliser XMPP, parce que XMPP, c'est bien. Et puis j'ai fait ça en python parce que python c'est bien. Et j'ai fait deux trois bricoles pour que ça marche mieux, pour que ça ne recharge pas systématiquement les vidéos déjà téléchargées, j'ai fait quelques requêtes Xpath, j'ai rendu les fichiers accessibles par http et ftp, j'ai créé un utilisateur Bender sur mon serveur XMPP et j'ai fait beaucoup d'essais.

Bref, j'ai fait un script python.

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
* parser le xml pour récupérer les url HD
* extraire le nom du fichier (après le dernier "/")
* vérifier que le fichier n'existe pas
* le sauvegarder

lsXmlFeedUrl = "http://www.canalplus.fr/rest/bootstrap.php?/bigplayer/search/bref"
lsSaveFolder = "/opt/perso/bref/episodes"

lsXmppSmsList = "{{mon_jid}}" # exemple : bender@monserveurxmpp.net
lsXmppSmsMessageTemplate = "Un nouvel épisode de 'Bref' est disponible : http://{{ip_du_serveur_download}}/perso/bref/%s"

import libxml2
import os.path
import subprocess
import xmpp

class Episode(object):

 def __init__(self, psUrl, psFilename, pbLocallyAvailable = False):
 self._sUrl = psUrl
 self._sFilename = psFilename
 self._bLocallyAvailable = pbLocallyAvailable

 def getName(self):
 return self._sFilename

 def getFilename(self):
 return self._sFilename

 def getFilePath(self, psPathRoot = ""):
 lsFilePath = self._sFilename
 if psPathRoot!="":
 lsFilePath = "%s/%s" % (psPathRoot, lsFilePath)
 return lsFilePath

 def getUrl(self):
 return self._sUrl

class XmppShortMessageService(object):
 def __init__(self, psXmppServerName, psXmppServerPort, psXmppSenderUserName, psXmppSenderUserPass, psXmppSenderUserRsc):
 self._sXmppServerName = psXmppServerName
 self._sXmppServerPort = psXmppServerPort

 self._sXmppSenderUserName = psXmppSenderUserName
 self._sXmppSenderUserPass = psXmppSenderUserPass
 self._sXmppSenderUserRsc = psXmppSenderUserRsc

 self._oXmppClient = None

 def connect(self):
 if self._oXmppClient==None:
 self._oXmppClient = xmpp.Client(self._sXmppServerName)
 self._oXmppClient.connect(server=(self._sXmppServerName, self._sXmppServerPort))
 self._oXmppClient.auth(self._sXmppSenderUserName, self._sXmppSenderUserPass, self._sXmppSenderUserRsc)
 self._oXmppClient.sendInitPresence()

 def send(self, psMsgText, psMsgTo):
 self.connect()
 lsXmppMessage = xmpp.Message(psMsgTo, psMsgText)
 lsXmppMessage.setAttr('type', 'chat')
 self._oXmppClient.send(lsXmppMessage)

if __name__ == '__main__':
 # 1. download XML
 # 2. search episode urls
 # 3. check if the episodes found are already downloaded
 # 4. download required files

 # STEP 1
 loXmlStreamDom = libxml2.parseFile(lsXmlFeedUrl)
 loVideoElements = loXmlStreamDom.xpathEval('//VIDEO[./RUBRIQUAGE/RUBRIQUE="BREF"]')

 loEpisodeList = list()

 for loVideoElement in loVideoElements:
 loHdVideoFileUrl = loVideoElement.xpathEval('./MEDIA/VIDEOS/HD')[0] # there is only one HD

 lsHdVideoFileUrl = loHdVideoFileUrl.content.strip()
 lsHdVideoFileName = lsHdVideoFileUrl.rsplit("/", 1)[1]

 loNewEpisode = Episode(lsHdVideoFileUrl, lsHdVideoFileName, False)
 loEpisodeList.append(loNewEpisode)
 print "Found Episode: %s" % (loNewEpisode.getName())

 for loEpisode in loEpisodeList:
 lsLocalFilePath = "%s/%s" % (lsSaveFolder, loEpisode.getFilename())
 if os.path.isfile(lsLocalFilePath)==True:
 print "Skipping %s [already downloaded]" % loEpisode.getName()
 else:
 lsCmd = "/usr/bin/rtmpdump -r \"%s\" -o \"%s\"" % (loEpisode.getUrl(), loEpisode.getFilePath(lsSaveFolder))
 print "Download %s" % (loEpisode.getName())
 os.system(lsCmd)

 lsCmd = "ncftpput -u freebox -p {{freebox_ftp_password}} {{freebox_ip}} '/Disque dur/Enregistrements/Bref/' %s" % (loEpisode.getFilePath(lsSaveFolder))
 print "Upload to freebox: %s" % (loEpisode.getName())
 os.system(lsCmd)

 # Send an XMPP notification including a link to see the episode
 loXmppSms = XmppShortMessageService('{{mon_server_xmpp}}', '5223', 'bender', 'mynameisbender', 'BrefDownloadBot')
 loXmppSms.send(lsXmppSmsMessageTemplate % (loEpisode.getFilename(), loEpisode.getFilename()), lsXmppSmsList)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars276029000avatar.jpg

