

Journal WRT54G : cross-compiler firmware et applications

Posté par lesensei le 21 juin 2004 à 13:12.

Étiquettes :
aucune

[image:]

Bon, ceci est un brouillon d'un véritable article/howto que je ferai un jour, et qui lorsqu'il sera finalisé sera probablement en Licence Art Libre, mais de toute façon sous licence libre. En attendant, ça m'arrangerait que personne ne le recopie, donc je laisse le droit d'auteur s'appliquer (y compris aux traductions), et blah blah blah...

Vous êtes l'heureux possesseur d'un Linksys WRT54G, ce routeur bien fait, plein de possibilités et qui tourne sous GNU/Linux. Malheureusement voilà, vous trouvez qu'il lui manque une (ou plusieurs) fonctionnalité(s). Vous êtes loin d'être le seul, plus on en a, c'est connu, plus on en veut. Vous avez de la chance, le fait que ce routeur utilise un firmware basé sur un noyau linux et une majorité d'outils libres vous ouvre toutes les portes (ou presque, la mémoire contenue dans le routeur étant tout de même limitée). Voilà donc que vous vous demandez comment compiler vous même votre firmware, ou vos applications. Ce petit "tutoriel" est fait pour vous. Je vais vous guider pas-à-pas dans la création d'un toolchain de cross-compilation, et vous expliquer les concepts mis en oeuvre au fur et à mesure.

Qu'est-ce que la cross-compilation ?

Les mots peuvent être trompeurs, la cross compilation n'est pas pratiquée par les chrétiens qui prient pour la réussite de la compilation, équipés de leur crucifix. La locution "cross-compilation" désigne le processus de compiler pour une architecture, tout en se trouvant sur une architecture différente. Ceci s'applique au processeur bien sûr, mais aussi aux APIs utilisées. Par exemple, on peut compiler depuis un système powerpc-linux-unknown-gnu vers un système i686-pc-mingw32-gcc qui désigne donc le fait de compiler un logiciel sur une machine à base de powerpc (par exemple, un macintosh) sous linux avec les outils GNU, mais ce logiciel devra tourner sur un PC avec processeur Intel Pentium II ou équivalent sous Windows. Par définition, le logiciel en question ne pourra donc pas tourner sur le système sur lequel a été effectué la compilation.

Bon, okay, j'ai compris (ou je m'en fous), comment je fais ?

Maintenant, on peut prier ! Il s'agit de compiler, à l'aide du compilateur natif de la machine, un autre compilateur (et les outils associés) qui servira à générer du code pour la machine cible (target). Cet "chaîne" d'outils est appelée toolchain en anglais, et sans elle, point de salut. Sous linux, et avec les outils GNU, une toochain est composée au minimum des binutils (utilitaires permettant d'agir sur le code compilé, par exemple de lier un exécutable à une bibliothèque), de gcc, de la glibc (la bibliothèque C de GNU), et de headers (fichier d'en-tête C) du noyau. Allons-y pour l'exemple, avec le routeur qui nous intéresse. Linksys a utilisé pour compiler son firmware un gcc en pré-version 3.0, une glibc en version 2.2.3, des binutils en version 2.11 et un noyau linux en version 2.4.20. Nous allons donc utilisé des versions le plus proches possible.

Pfff, la théorie, sainul, je veux passer à la pratique...

Ça tombe bien, la théorie, l'auteur de ces lignes n'y comprend pas tout. On va donc passer à la pratique, et pour ça, il faut télécharger l'outil crosstool (http://kegel.com/crosstool/(...)), réalisé par Dan Kegel, et qui va considérablement nous simplifier la vie. Une fois le tarball de crosstool 0.27 téléchargé et décompressé, rendez-vous à sa racine. Là, nous allons créer et modifier quelques fichiers.

D'abord, copiez demo-mipsel.sh en wrt54g.sh. Puis éditez-le, et mettez les valeurs suivantes:

"RESULT_TOP" doit être positionné sur "/opt/brcm";

modifiez aussi le "mkdir -p" en accord avec cela;

puis modifiez la ligne débutant par "eval" comme ceci:

"eval `cat wrt54g.dat gcc-3.0-glibc-2.2.3-linux-2.4.20.dat` sh all.sh --notest"

Ensuite, copiez le fichier mipsel.dat vers wrt54g.dat, puis éditez le:

Modifiez "TARGET" pour le mettre à "mipsel-linux".

Enfin, copiez un fichier de versions gcc et glibc, par exemple gcc-3.3-glibc-2.3.2.dat vers dcc-3.0-glibc-2.2.3-linux-2.4.20.dat, puis éditez-le à son tour:

Positionnez "BINUTILS_DIR" à "binutils-2.11", "GCC_DIR" à "gcc-3.0", "LINUX_DIR" à "linux-2.4.20", "GLIBC_DIR" à "glibc-2.2.3" et enfin, "GLIBCTHREADS_FILENAME" à "glibc-linuxthreads-2.2.3".

Il ne reste plus qu'à éditer all.sh, et à changer la définition de "PREFIX" en "/opt/brcm/hndtools-mipsel-linux-3.0" et à créer ce fameux dossier "/opt/brcm" (avec les droits qui vont bien) pour lancer la compilation. Vous êtes prêts ? Tapez sh "wrt54g.sh" dans votre console favorite, et puis finalement, si vous êtes croyants, prenez ce fameux crucifix et priez :-)

La suite dans un prochain épisode, parce que finalement, là, je fatigue...

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

