

Journal Golang, oops you did it again


Posté par David Delassus (site web personnel) le 15 mars 2022 à 21:00.
Licence CC By‑SA.

Étiquettes :

	golang

	generics

	déception











[image: ]



C'est donc aujourd'hui que sort officiellement Go 1.18, avec le support tant attendu des Generics.


Naïf que je suis, je me dis :



Cool! On va enfin pouvoir implémenter des types Option et Result pour avoir enfin une gestion d'erreur potable.




Allez, je me lance. On commence par le type Option (ou Maybe Monad pour les intimes).


Tout d'abord, on se créé 2 structures, None et Some[T] :


type None struct {}
type Some[T any] {
  value T
}


On crée ensuite l'interface qui encapsule ces 2 types :


type Option[T any] interface {
  None | Some[T]
}


Et on crée les constructeurs :


func Nothing() None {
  return None {}
}

func Just[T any](val T) Some[T] {
  return Some[T] { value: val }
}


Puis, on créé une petite fonction HasValue qui retourne vrai ou faux selon le type de la monade :


func (opt None) HasValue() bool {
  return false
}

func (opt Some[T]) HasValue() bool {
  return true
}


Jusque là, tout va bien. Maintenant, on va créer la fonction Map qui transforme un Option[T] en Option[U] grâce à une fonction qui transforme T en U.


Le principe est ultra simple :



	Si la monade est de type None on retourne None


	Si la monade est de type Some[T] on applique la fonction f : T -> U sur la valeur contenue, et on retourne Some[U]





Voici l'implémentation :


func (opt None) Map[U any](f func(T) U) Option[U] {
  return Nothing()
}

func (opt Some[T]) Map[U any](f func(T) U) Option[U] {
  return Just(f(opt.value))
}


Plutôt simple non ?


C'est dommage, ça marchera pas :



method must have no type parameter




Et c'est un choix volontaire --> https://go.googlesource.com/proposal/+/refs/heads/master/design/43651-type-parameters.md#No-parameterized-methods


Alors, oui, je pourrais faire :


func MapOption[T any, U any](opt Option[T], f func(T) U) Option[U] {
 // ...
}


Mais non, Option[T] ne peut être utilisé que comme type constraint.


Ok, alors :


func MapOption[T any, U any, OT Option[T], OU Option[U])(opt OT, f func(T) U) OU {
  switch opt.(type) {
    // ...
  }
}


Toujours pas, on ne peut pas faire de switch sur le type sous-jacent d'un générique.


Ok, donc :


func MapOption[T any, U any](opt interface{}, f func(T) U) interface{} {
  switch opt.(type) {
  case Some[T]:
    val := opt.(Some[T]).value
    return Just[U](f(val))

  default:
    return Nothing()
  }
}


Oui, ça marche. Mais on perd tout l'intérêt des generics. Et il va falloir s'amuser à cast les interface{} dans le bon type à chaque appel.


Donc pour l'instant, AMHA, les generics ne servent pas à grand chose si ce n'est composer des interfaces.





EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

EPUB/avatars124053000avatar.jpg
Rl





