

Journal [Letlang] Écrire un compilateur en Rust

Posté par David Delassus (site web personnel) le 07 mars 2022 à 22:42.
Licence CC By‑SA.

Étiquettes :

	letlang

	rust

	codegen

	compilateur

	langage_de_programmation

[image:]

Sommaire

	

	Créer l'AST (Abstract Syntax Tree)

	
Produire le code Rust
	Le context de compilation

	Préparer la gestion d'erreur

	Le design pattern Visitor

	Prendre des p'tits bouts d'trucs, et les assembler ensemble

	Conclusion

Bonjour Nal,

Il y a quelques temps, je t'ai présenté Letlang, un projet de langage de programmation fonctionnelle.

Il a pour but d'être compilé vers du code natif, avec un système de type strict et expressif basé sur une logique d'ordre supérieur.

Malheureusement, avec le boulot (mission freelance + Kubirds), j'ai pas beaucoup de temps à y consacrer, à part quelques heures par-ci par-là.

L'un des objectifs initiaux de ce langage était d'en faire un langage compilé. Comment ? En produisant du LLVM IR. Je me suis gratté la tête pas mal de temps sur comment représenter les structures de haut niveau que je veux introduit dans un langage bas niveau comme LLVM IR.

Et puis… un déclic. Vous connaissez un langage un peu plus haut niveau qui compile via LLVM ? Oui, c'est ça, le Rust.

Le compilateur Letlang est écrit en Rust, alors pourquoi pas simplement produire du code Rust et ensuite appeler rustc ?

Voici un exemple :

use std::{
 process::{Command, Stdio},
 io::Writer,
 error::Error,
};

fn main() -> Result<(), Box<dyn Error>> {
 let source_code = b"fn main() { println!(\"hello world\"); }";

 let cmd = Commamd::new("rustc").args(["-o", "test", "-"]);
 let mut proc = cmd.stdin(Stdio::piped()).spawn()?;

 if let Some(mut stream) = proc.stdin.as_mut() {
 if let Ok(_size) = stream.write(source_code) {
 proc.wait()?;
 }
 else {
 proc.kill()?;
 return Err(/* some error */);
 }
 }
 else {
 proc.kill()?;
 return Err(/* some error */)
 }

 Ok(())
}

Un petit cargo run et hop, on a un binaire test qui affiche hello world.

À partir de là, le compilateur devient assez simple :

	on a l'AST décrit avec le système de type de Rust (sous forme d'enum et de struct)

	on utilise le design pattern visitor pour parcourir cet AST et produire le code source Rust

	enfin, on envoi le code source produit à rustc

DISCLAIMER: Je fais du Rust seulement depuis quelques mois. Je ne prétend pas être un expert dans le langage, et il est tout à fait possible que le code que je produis ne soit pas le plus efficace / optimisé en terme d'usage de la mémoire / … Je suis bien sûr ouvert à vos critiques les plus viscérales pour me permettre de progresser :)

Créer l'AST (Abstract Syntax Tree)

C'est la partie la plus simple, on définit grâce au système de type Rust la structure du langage. Lorsque l'on implémentera le parseur, on va extraire les informations dans cet arbre, que l'on passera tel quel au compilateur.

On peut donc déjà commencer à travailler sur le compilateur avant même d'avoir le parseur.

Petit exemple :

#[derive(Clone, Debug, PartialEq)]
enum Expression {
 Number(f64),
 BinaryOperation { lhs: Box<Expression>, op: String, rhs: Box<Expression> },
 UnaryOperation { op: String, expr: Box<Expression> },
}

impl Enumeration {
 pub fn number(val: 64) -> Box<Self> {
 Box::new(Self::Number(val))
 }

 pub fn add(a: Box<Expression>, b: Box<Expression>) -> Box<Self> {
 Box::new(Self::BinaryOperation {
 lhs: a,
 op: "+".to_string(),
 rhs: b,
 })
 }

 pub fn factorial(n: Box<Expression>) -> Box<Self> {
 Box::new(Self::UnaryOperation {
 op: "!".to_string(),
 expr: n,
 })
 }
}

L'usage de Box<T> est requis car il s'agit d'un type récursif. L'implémentation qui suit fournit juste quelques helpers pour créer l'AST :

let ast = Expression::factorial(
 Expression::add(
 Expression::number(2),
 Expression::number(3),
)
);

Produire le code Rust

Afin de me simplifier la vie lors de la production du code Rust, j'ai décidé d'utiliser la biliothèque tinytemplate.

Le context de compilation

La première étape est de créer une structure Context que l'on va utiliser lors du parcours de l'AST :

use tinytemplate::TinyTemplate;

struct Context<'a> {
 pub tt: TinyTemplate<'a>,
 // other contextual data, like symbol lookup tables etc...
}

Et l'implémentation qui va bien :

use tinytemplate::format_unescaped;

static SOME_NODE_CODE: &'static str = include_str!("some_node_code.rs.tt");

impl Context<'_> {
 pub fn new() -> Self {
 let mut tt = TinyTemplate::new();
 tt.set_default_formatter(&format_unescaped); // on veut pas de " etc...

 tt.add_template("some_node", SOME_NODE_CODE).expect("should be a valid template");

 Self { tt, /* ... */ }
 }
}

Préparer la gestion d'erreur

Lors du parcours de l'AST, il est possible de rencontrer des erreurs. On va se créer un type spécial pour pouvoir les retourner :

use std::fmt;

type Result<T> = std::result::Result<T, CompilationError>;

#[derive(Debug)]
struct CompilationError {
 message: String,
}

impl CompilationError {
 pub fn new(message: String) -> Self {
 Self { message }
 }
}

impl fmt::Display for CompilationError {
 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 write!(f, "CompilationError: {}", self.message)
 }
}

impl std::error::Error for CompilationError {
 fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
 None
 }
}

Le design pattern Visitor

Un dernier prérequis est le trait qu'il va falloir implémenter pour chaque partie de l'AST :

trait Visitor {

 type Node;

fn visit(node: Box, context: &mut context) -> Result;

}

```

Prendre des p'tits bouts d'trucs, et les assembler ensemble


Enfin! On peut commencer à travailler :


use serde_json::json;

impl Visitor for Expression {
  type Node = Expression;

  fn visit(node: Box<Expression>, context: &mut context) -> Result<String> {
    match *node {
      Expression::Number(val) => Ok(format!("{}", val),
      Expression::UnaryOperation { op, expr } => {
        let inner_code = Expression::visit(expr, context)?;

        let data = json!({
          "operator": op,
          "inner_code": inner_code,
        })

        let res = context.tt.render("some_node", &data);

        if let Ok(code) = res {
          Ok(code)
        }
        else {
          Err(CompilationError::new("oops".to_string()))
        }
      },
      Expression::BinaryOperation { lhs, op, rhs } => {
        let lhs_code = Expression::visit(lhs, context)?;
        let rhs_code = Expression::visit(rhs, context)?;
        // [...] similaire a UnaryOperation
      }
    }
  }
}


Si je reprend mon AST initial, je peux maintenant le traduire en Rust :


let ast = Expression::factorial(
  Expression::add(
    Expression::number(2),
    Expression::number(3),
  )
);
let mut context = Context::new();
let source_code = Expression::visit(ast, &context)?;

// call rustc with `source_code.as_bytes()`

Conclusion


Cette solution facilite grandement l'implémentation du compilateur. En effet, l'implémentation du runtime sera faite dans un langage qui me donne certaine garantie concernant la sécurité de la mémoire. Chose que je n'aurais certainement pas pu fournir avec LLVM IR directement.


De même, si je veux ajouter des dépendances au runtime (comme par exemple GMP pour les nombres à précision arbitraire), ou permettre d'inline du Rust en Letlang, ou d'utiliser l'ecosystème Rust en Letlang, tout de suite, cela rend le langage un peu plus utile :)


Cela veut également dire que pour compiler du code Letlang, on aura besoin de la toolchain Rust. C'est parfaitement acceptable je trouve.


Et toi Nal, qu'en penses tu ?





EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

EPUB/avatars124053000avatar.jpg
Rl





