

Journal [Letlang] Faire la différence entre un nombre et une quantité

Posté par David Delassus (site web personnel) le 21 mars 2022 à 15:51.
Licence CC By‑SA.

Étiquettes :

	letlang

	unité

	mesure

	langage_de_programmation

[image:]

Bonjour Nal,

Je vais encore te parler de Letlang aujourd'hui. Mais cette fois ci, pas de code, plutôt une discussion sur une fonctionnalité que j'aimerais bien rajouter à la syntaxe.

Voici d'abord une petite table des matières de ma série d'articles sur ce projet :

	Encore un nouveau langage de programmation

	Écrire un compilateur en Rust

	Écrire un compilateur en Rust (partie 2)

Je suis tombé ce weekend sur ce sujet (sur HackerNews): Please put units in names.

L'idée est la suivante :

Dans la plupart des langages de programmation, on a des int et des float, en math/physique, on appelle ça des scalaires.

Toujours en math physique, on a des mesures de quantités. Ces mesures sont composées de 3 choses :

	un scalaire représentant la valeur de la mesure

	une unité représentant le type de la mesure

	une marge d'erreur de l'outil qui a fait la mesure

Ces mesures ont des règles bien précises. Par exemple :

	on peut multiplier/diviser 2 mesures différentes, on obtient une nouvelle mesure : 2kg / 2s = 1 kg/s

	on peut additionner/soustraire 2 mesures identiques : 2s + 3s = 5s

Ces opérations ont du sens : 1kg/s représente un changement de 1kg pour chaque unité de temps

Par contre, 1kg + 5s n'a pas de sens physique, on ne peut donc pas les "combiner" et le résultat de l'opération est 1kg + 5s et certainement pas 6 (kg+s).

Hors si j'écrit en Python :

kilograms = 1
seconds = 5
wtf = kilograms + seconds
assert wtf == 6

Cela fonctionne sans soucis.

Toujours en lisant la discussion sur HackerNews, je tombe sur ce concept en F# : https://fsharpforfunandprofit.com/posts/units-of-measure/

Il est possible d'ajouter au système de type de nouvelles unités :

[<Measure>] type kg
[<Measure>] type s

let a = 10<kg>
let b = 5<s>
let c = a / b // 2<kg/s>
let d = a * b // 50<kg*s>
let e = a + b // COMPILATION ERROR

C'est assez excellent, je veux ça en Letlang.

J'ai encore un petit soucis par contre. Les unités temporelles :

	une minute c'est 60 secondes : FAUX, parfois c'est 61

	un mois c'est 30 jours : FAUX, parfois c'est 30, parfois c'est 31, parfois c'est 29, parfois c'est 28

	un an c'est 365 jours : FAUX, parfois c'est 366, parfois c'est 355

Si je te demande d'ajouter 2 mois à un timestamp, en Python tu écrirais :

import datetime

ts = # ...
dt = datetime.datetime.fromtimestamp(ts)
new_dt = dt + datetime.timedelta(months=2)

Mais en vrai, tu devrais plutôt me poser la question :

Ça veut dire quoi ajouter 2 mois ?

J'ajoute 2*30 jours ?

J'ajoute 61 (30+31) jours ?

Je change juste la partie "mois" de la date sans changer le jour ?

Je le fais dans quelle timezone ?

Bref, si tu en veux plus des comme ça, je te conseille cette merveilleuse lecture : https://gist.github.com/timvisee/fcda9bbdff88d45cc9061606b4b923ca

Revenons au sujet. Quand je vais devoir écrire la bibliothèque standard du langage. Quel serait selon toi le moyen le plus correct d'écrire cet objet timedelta ? Quelle est son unité ?

Même question au final pour l'objet datetime et date. Concrètement je vois plusieurs types temporels :

	"point in time" / "instant" : une valeur qui a pour unité un calendrier et une timezone

	"duration" : une valeur qui a pour unité des secondes multipliées par des puissances de 10 (comme en physique)

	"time span" : un tuple composé de 2 "point in time"

Donne moi ton avis dans les commentaires :)

Et puis, si t'as l'tin, el'recette d'el tarte tatin, elle est tout' simpe. Té fais ene tarte, et pi t'atin.

[image: Tarte tatin]

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/21f84f91454f62cafa6e67a0fd30db75c3acf0e0ad697807a9cec2dc.jpg

EPUB/avatars124053000avatar.jpg
Rl

