

Journal Linux et BusyBox, un duo parfait pour s'amuser


Posté par David Delassus (site web personnel) le 31 janvier 2022 à 09:34.
Licence CC By‑SA.

Étiquettes :

	snap

	linux

	busybox

	debian

	flatpak











[image: ]



Bonjour Nal,


Depuis peu, le weekend j'aime bien m'amuser sur des petits projets que je ne compte pas continuer.


Ce weekend, c'était concevoir rapidement un OS bootable basé sur Linux. Mais sans suivre LFS.

Le disque virtuel


Je commence par me créer une petite image disque :


$ qemu-img create ./hd0.img 2G



Puis une table des partitions (à la va vite, une seule partition qui fait tout le disque):


$ cfdisk ./hd0.img



Enfin, je formate le tout en EXT4 et le monte :


$ losetup -P /dev/loop0 ./hd0.img
$ mkfs.ext4 /dev/loop0p1
$ mkdir ./mnt
$ mount /dev/loop0p1 ./mnt


Booter avec Linux et GRUB


L'étape suivante, c'est installer le noyau et le bootloader. J'ai pas envie de compiler moi même par flemme, je prend donc le noyau et l'initrd d'une Debian :


$ mkdir ./mnt/boot
$ cp /boot/vmlinuz-* ./mnt/boot/kernel.bin
$ cp /boot/initrd* ./mnt/boot/kernel.initrd
$ mkdir ./mnt/boot/grub
$ touch ./mnt/boot/grub.cfg



J'édite ce dernier fichier avec le contenu suivant :


set timeout=0
set default=0

menuentry "Mini Linux" {
  set root=(hd0,msdos1)
  echo "Loading kernel..."
  linux /boot/kernel.bin noresume quiet root=/dev/sda1
  echo "Loading initial ramdisk..."
  initrd /boot/kernel.initrd
}



L'option noresume est obligatoire vu que j'ai pas de partition SWAP et que le initrd de Debian est configuré avec l'UUID de la partition de ma distribution. J'aurais une belle erreur en boucle au démarrage (cf cet article).


Je pourrais recréer l'initrd, mais cela me prendrais plus que 2min. Non c'est pas le but.


On finalise l'installation de Grub avec la commande suivante :


$ echo "(hd0) /dev/loop0" > ./grub-device-map
$ grub-install \
    --no-floppy \
    --grub-mkdevicemap=./grub-device-map \
    --modules="biosdisk part_msdos ext2 configfile" \
    --root-directory ./mnt \
    /dev/loop0



On créé quelques dossiers supplémentaires :


$ mkdir ./mnt/{dev,run,sys,proc}



Et hop, plus qu'à démonter et tester tout ça :


$ umount ./mnt
$ losetup -d
$ qemu-system-x86_64 -hda ./hd0.img -m 1G



Ça boot ! Et je me retrouve dans l'initramfs car il ne trouve pas le programme init (PID 1).

Un système minimal avec BusyBox


Pour le coup, rien de plus simple :



	on se rend à cette adresse


	on télécharge les binaires statiques

	on les place dans ./mnt/bin (pas oublier de remonter le disque)




Un petit changement du fichier ./mnt/grub/grub.cfg :


- linux /boot/kernel.bin noresume quiet root=/dev/sda1
+ linux /boot/kernel.bin noresume quiet root=/dev/sda1 init=/bin/init


Le programme init va lire le fichier /etc/inittab, et s'il n'existe pas, il va assumer une configuration par défaut, c'est pas vraiment ce que je veux, du coup, vite fait bien fait :


$ mkdir ./mnt/etc
$ cat > ./mnt/etc/inittab <<EOF
::sysinit:/etc/rc.sh init

::ctrlaltdel:/bin/reboot

::shutdown:/etc/rc.sh shutdown
::shutdown:/bin/umount -a -r

::restart:/bin/init

::once:/bin/chvt 2
tty2::respawn:-/bin/getty 38400 tty2 -l /bin/sh -n
EOF
$ cat > ./mnt/etc/rc.sh <<EOF
#!/bin/sh

echo "All done"
EOF
$ chmod +x ./mnt/etc/rc.sh



Pour plus d'info sur ce fichier, vous pouvez consulter ce lien.


Donc qu'est-ce qu'il se passe ici ?



	après le boot, on va appeler notre script /etc/rc.sh


	lors d'un restart on va simplement réappeler /bin/init


	lors de l'appui sur les touches CTRL+ALT+DEL, on va appeler le programme /bin/reboot


	lors du shutdown, on va appeler notre script /etc/rc.sh puis la commande umount





Une fois que le système est initialisé, on va appeler une seule fois la commande /bin/chvt 2, c'est l'équivalent de CTRL+ALT+F2. J'ai pas envie de mettre les futurs TTY sur le même que la sortie du kernel.


Enfin, j'en créé un nouveau, tty2 avec la commande getty. Et au lieu de lancer le programme /bin/login, je lui demande de lancer /bin/sh.


Un dernier petit détail :


$ cat > ./mnt/etc/passwd <<EOF
root:x:0:0:root:/root:/bin/sh
EOF
$ mkdir ./mnt/root



On démonte la partition, et on relance QEMU. Ça boot et on a un shell!

Conclusion


J'ai maintenant une image disque bootable avec un kernel, et un système de base ultra minimal, le tout en moins de temps qu'il n'en faut pour dire "linux".


Le vrai fun commence. Au lieu d'avoir un /etc/rc.sh, j'ai commencé à écrire un petit binaire statique en C++ qui embarque Lua 5.4. L'idée est d'avoir un /etc/rc.lua qui ressemblerait à :


local ssh = rc.service.define{
  name = "sshd",
  command = "/bin/sshd"
}

function rc.phase.init()
  ssh:start()
end

function rc.phase.shutdown()
  ssh:stop()
end


Le tout avec création de cgroups pour chaque service. Pourquoi ? Parce que je trouve ça fun le temps d'un weekend.


Qui sait, peut être que le weekend prochain je regarderais comment ajouter uutils et Wayland. Pourquoi pas Flatpak ou Snap aussi dans le futur ? 


Tout plein de choses à tester, pour une inutilité maximale !





EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

EPUB/avatars124053000avatar.jpg
Rl





