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Bonjour Nal!


Le titre a dut t'intriguer. Tu te demandes peut-être, c'est quoi HTMX ? c'est quoi React ? Ou alors tu connais déjà, et tu es prêt a me préparer un commentaire cinglant m'expliquant que je suis un fou.


Commençons par le commencement.

C'est quoi HTMX ?


C'est une petite bibliothèque Javascript qui nous permet de ne plus écrire de Javascript. Enfin, presque plus. Cette bibliothèque adopte le concept "HATEOAS", "Hypermedia As The Engine Of Application State" (Hypermedia en tant que moteur de l'état de l'application).


Donc pour comprendre HTMX, il faut comprendre ce qu'est l'Hypermedia.


Pour faire simple, un media est un document, une ressource qui peut être du texte, une image, une vidéo, de la musique, etc. Le concept d'hypermedia ajoute à ce document des informations supplémentaires : des références à d'autres documents.


Ainsi, un ensemble de document "hypermedia" forme grâce à ces références une sorte de toile que l'utilisateur peut naviguer.


HTML (pour "Hyper Text Markup Language") est l'exemple d'hypermedia le plus connu. Il enrichit le format textuel avec des liens, et des formulaires permettant à l'utilisateur d'interagir avec le document.


HTMX se présente comme une extension du HTML, donnant la possibilité d'ajouter de nouvelles interactions à toutes parties du document. Avec un HTML plus puissant, il devient donc possible de créer des applications complexes qui sont entièrement décrite par des documents "hypermedia".


L'architecture classique d'une application utilisant HTMX est très souvent un serveur qui génère et retourne le document hypermedia, qui référence donc d'autres documents ou ressources fournies par ce serveur. Au niveau logiciel, cela se traduit donc par une architecture similaire à ce qui se faisait avec l'avènement des "frameworks" côté client (Angular, React, Vue, EmberJS, …), comme par exemple Django, Symphony, Laravel, Ruby on Rails, …


Pour FlowG, la solution Open Source de traitement de journaux systèmes que je développe depuis quelques temps, et que j'ai déjà mentionné dans des journaux précédents, j'avais justement choisit HTMX pour créer l'interface utilisateur, avec le langage Go et le moteur de "template" Templ.


J'étais satisfait de ce choix, jusqu'à un moment fatidique…

Au final, c'est un problème de compétence


L'interface de FlowG était très crue. Je ne suis pas un expert "UX" (expérience utilisateur). J'ai donc créé quelque chose de basique, et ensuite attendu les retours d'utilisateurs.


J'ai eu ces retours très instructifs. On me demandait par exemple la possibilité d'éditer d'autres ressources depuis l'éditeur de "pipeline", sans quitter cet éditeur.


Prendre en compte tout ces changements nécessitait une gestion de "l'état" de l'application fine, et bien identifier et définir comment, quand et quelles données vont transiter dans chaque interaction du document hypermedia avec le serveur.


Je dois vous avouer, j'avais beaucoup de difficultés à ne pas écrire de code spaghetti. Et tout cela, ce sont des choses que je maîtrisais déjà avec des "framework" clients tel que React.


Le projet est encore jeune et petit, si il y avait un bon moment pour changer de technologie avant que cela devienne de la dette technique impossible à rembourser, c'était maintenant.

Du coup, pourquoi React ?


Premièrement, j'avais déjà React dans l'application. Pour l'éditeur de code, et pour l'éditeur de "pipeline". J'avais encapsulé ces composants dans des éléments HTML spécifique (aussi appelés "Web Components") :


<code-editor code="..."></code-editor>
<flow-editor flow="..."></flow-editor>


Deuxièmement, c'est une technologie que je maîtrise mieux que HTMX.


Un des objectifs de FlowG, c'est qu'il soit entièrement pilotable par l'API. Tout ce qui est faisable dans l'interface utilisateur doit être faisable via l'API. Par conséquence, si l'interface utilisateur est elle même un client de l'API, l'objectif est atteint par définition.


Cela a pour conséquence de clairement séparer l'application en un "frontend" et un "backend". Ainsi, un contributeur potentiel n'a plus besoin d'être "full stack". Avec ce choix, j'étends ainsi l'éventail de contributions possibles. La barrière à l'entrée est baissée.

Cette nouvelle interface, elle ressemble à quoi ?


Au niveau technologie, on passe de :



	
Go / Templ / HTMX à React


	
MaterializeCSS  (qui est déprécié) à React MUI (toujours Material Design donc)

	Une bête <table> avec VirtualScroller à AG Grid





Le serveur web en Go ne sert plus que l'API ainsi que les fichiers statiques de l'interface utilisateur qui sont embarqués dans le binaire statique.


Voici par exemple l'éditeur de "pipeline" :


[image: capture éditeur de pipeline]


On n'a plus besoin de spécifier à la main le nom des nœuds que l'on veut utiliser dans la pipeline, on peut les glisser et les déposer directement.


On peut en créer depuis l'éditeur de "pipeline", et éditer les nœuds directement sur le graphe.


On voit également l'apparition du bouton "Supprimer" lorsque l'on sélectionne un nœud. Avant il fallait deviner que c'était la touche "Backspace" qui s'occupait de cela.


Et la vue pour visualiser les journaux systèmes :


[image: capture vue "streams"]


On notera une amélioration de la sélection de la fenêtre de temps :


[image: capture timewindow 1]


Le bouton "Watch Logs" servira a déclencher la visualisation des journaux en temps réel. L'API fournit un "endpoint Server-Sent Events" qui sera consommé par l'interface utilisateur. Il faut noter que l'implémentation officielle des navigateurs, EventSource, ne supporte pas l'envoi d'en-têtes HTTP. Hors c'est par ce mécanisme que l'authentification est implémentée. J'ai donc plutôt dût utiliser la bibliothèque suivante : event-source-plus.


[image: capture timewindow 2]


La sélection de ce bouton changera donc le texte affiché pour refléter le choix de l'utilisateur.


[image: capture timewindow 3]


Aussi, grâce à la bibliothèque AG Grid, utilisée pour le rendu du tableau, on peut réorganiser les colonnes selon notre préférence (ne persiste pas entre 2 rechargements de la page, plus tard peut être ?).


Un double-clique sur une ligne du tableau permettra de la visualiser en JSON, telle qu'elle est stockée dans la base de données :


[image: capture log preview]

Conclusion


Beaucoup d'améliorations de l'expérience utilisateur, en relativement peu de temps, tout simplement parce que je suis un meilleur développeur React que HTMX.


Au final, quand je conçois une application complexe, je suis trop habitué au modèle React/Vue. Le modèle "hypermedia", avec HTMX, reste ardu à réaliser de manière élégante, avec une implémentation qui sera à l'épreuve du temps. Je semble condamné à n'utiliser HTMX que pour des petits projets.


Liens :



	https://github.com/link-society/flowg

	https://hub.docker.com/r/linksociety/flowg
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"timestamp": "2024-09-22T06:59:49.461Z",
"fields": {
"host": "192.168.1.3",
"message GET /about-us HTTP/1.1",
: "GET",

"timestamp": "2024-08-23 14:57:45 UTC"
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