

Journal Nouvelle version de FlowG - De HTMX à React, pour une meilleure expérience utilisateur ?

Posté par David Delassus (site web personnel) le 23 septembre 2024 à 19:27.
Licence CC By‑SA.

Étiquettes :

	flowg

	lowcode

	nocode

	logiciel_libre

	foss

	autopromotion

[image:]

Sommaire

	

	C'est quoi HTMX ?

	Au final, c'est un problème de compétence

	Du coup, pourquoi React ?

	Cette nouvelle interface, elle ressemble à quoi ?

	Conclusion

Bonjour Nal!

Le titre a dut t'intriguer. Tu te demandes peut-être, c'est quoi HTMX ? c'est quoi React ? Ou alors tu connais déjà, et tu es prêt a me préparer un commentaire cinglant m'expliquant que je suis un fou.

Commençons par le commencement.

C'est quoi HTMX ?

C'est une petite bibliothèque Javascript qui nous permet de ne plus écrire de Javascript. Enfin, presque plus. Cette bibliothèque adopte le concept "HATEOAS", "Hypermedia As The Engine Of Application State" (Hypermedia en tant que moteur de l'état de l'application).

Donc pour comprendre HTMX, il faut comprendre ce qu'est l'Hypermedia.

Pour faire simple, un media est un document, une ressource qui peut être du texte, une image, une vidéo, de la musique, etc. Le concept d'hypermedia ajoute à ce document des informations supplémentaires : des références à d'autres documents.

Ainsi, un ensemble de document "hypermedia" forme grâce à ces références une sorte de toile que l'utilisateur peut naviguer.

HTML (pour "Hyper Text Markup Language") est l'exemple d'hypermedia le plus connu. Il enrichit le format textuel avec des liens, et des formulaires permettant à l'utilisateur d'interagir avec le document.

HTMX se présente comme une extension du HTML, donnant la possibilité d'ajouter de nouvelles interactions à toutes parties du document. Avec un HTML plus puissant, il devient donc possible de créer des applications complexes qui sont entièrement décrite par des documents "hypermedia".

L'architecture classique d'une application utilisant HTMX est très souvent un serveur qui génère et retourne le document hypermedia, qui référence donc d'autres documents ou ressources fournies par ce serveur. Au niveau logiciel, cela se traduit donc par une architecture similaire à ce qui se faisait avec l'avènement des "frameworks" côté client (Angular, React, Vue, EmberJS, …), comme par exemple Django, Symphony, Laravel, Ruby on Rails, …

Pour FlowG, la solution Open Source de traitement de journaux systèmes que je développe depuis quelques temps, et que j'ai déjà mentionné dans des journaux précédents, j'avais justement choisit HTMX pour créer l'interface utilisateur, avec le langage Go et le moteur de "template" Templ.

J'étais satisfait de ce choix, jusqu'à un moment fatidique…

Au final, c'est un problème de compétence

L'interface de FlowG était très crue. Je ne suis pas un expert "UX" (expérience utilisateur). J'ai donc créé quelque chose de basique, et ensuite attendu les retours d'utilisateurs.

J'ai eu ces retours très instructifs. On me demandait par exemple la possibilité d'éditer d'autres ressources depuis l'éditeur de "pipeline", sans quitter cet éditeur.

Prendre en compte tout ces changements nécessitait une gestion de "l'état" de l'application fine, et bien identifier et définir comment, quand et quelles données vont transiter dans chaque interaction du document hypermedia avec le serveur.

Je dois vous avouer, j'avais beaucoup de difficultés à ne pas écrire de code spaghetti. Et tout cela, ce sont des choses que je maîtrisais déjà avec des "framework" clients tel que React.

Le projet est encore jeune et petit, si il y avait un bon moment pour changer de technologie avant que cela devienne de la dette technique impossible à rembourser, c'était maintenant.

Du coup, pourquoi React ?

Premièrement, j'avais déjà React dans l'application. Pour l'éditeur de code, et pour l'éditeur de "pipeline". J'avais encapsulé ces composants dans des éléments HTML spécifique (aussi appelés "Web Components") :

<code-editor code="..."></code-editor>
<flow-editor flow="..."></flow-editor>

Deuxièmement, c'est une technologie que je maîtrise mieux que HTMX.

Un des objectifs de FlowG, c'est qu'il soit entièrement pilotable par l'API. Tout ce qui est faisable dans l'interface utilisateur doit être faisable via l'API. Par conséquence, si l'interface utilisateur est elle même un client de l'API, l'objectif est atteint par définition.

Cela a pour conséquence de clairement séparer l'application en un "frontend" et un "backend". Ainsi, un contributeur potentiel n'a plus besoin d'être "full stack". Avec ce choix, j'étends ainsi l'éventail de contributions possibles. La barrière à l'entrée est baissée.

Cette nouvelle interface, elle ressemble à quoi ?

Au niveau technologie, on passe de :

	
Go / Templ / HTMX à React

	
MaterializeCSS (qui est déprécié) à React MUI (toujours Material Design donc)

	Une bête <table> avec VirtualScroller à AG Grid

Le serveur web en Go ne sert plus que l'API ainsi que les fichiers statiques de l'interface utilisateur qui sont embarqués dans le binaire statique.

Voici par exemple l'éditeur de "pipeline" :

[image: capture éditeur de pipeline]

On n'a plus besoin de spécifier à la main le nom des nœuds que l'on veut utiliser dans la pipeline, on peut les glisser et les déposer directement.

On peut en créer depuis l'éditeur de "pipeline", et éditer les nœuds directement sur le graphe.

On voit également l'apparition du bouton "Supprimer" lorsque l'on sélectionne un nœud. Avant il fallait deviner que c'était la touche "Backspace" qui s'occupait de cela.

Et la vue pour visualiser les journaux systèmes :

[image: capture vue "streams"]

On notera une amélioration de la sélection de la fenêtre de temps :

[image: capture timewindow 1]

Le bouton "Watch Logs" servira a déclencher la visualisation des journaux en temps réel. L'API fournit un "endpoint Server-Sent Events" qui sera consommé par l'interface utilisateur. Il faut noter que l'implémentation officielle des navigateurs, EventSource, ne supporte pas l'envoi d'en-têtes HTTP. Hors c'est par ce mécanisme que l'authentification est implémentée. J'ai donc plutôt dût utiliser la bibliothèque suivante : event-source-plus.

[image: capture timewindow 2]

La sélection de ce bouton changera donc le texte affiché pour refléter le choix de l'utilisateur.

[image: capture timewindow 3]

Aussi, grâce à la bibliothèque AG Grid, utilisée pour le rendu du tableau, on peut réorganiser les colonnes selon notre préférence (ne persiste pas entre 2 rechargements de la page, plus tard peut être ?).

Un double-clique sur une ligne du tableau permettra de la visualiser en JSON, telle qu'elle est stockée dans la base de données :

[image: capture log preview]

Conclusion

Beaucoup d'améliorations de l'expérience utilisateur, en relativement peu de temps, tout simplement parce que je suis un meilleur développeur React que HTMX.

Au final, quand je conçois une application complexe, je suis trop habitué au modèle React/Vue. Le modèle "hypermedia", avec HTMX, reste ardu à réaliser de manière élégante, avec une implémentation qui sera à l'épreuve du temps. Je semble condamné à n'utiliser HTMX que pour des petits projets.

Liens :

	https://github.com/link-society/flowg

	https://hub.docker.com/r/linksociety/flowg

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/4aa210d5e00660d844befc45e18ba3135128a1e02c824c94974d4cb4
FROM 23/09/2024 18:44:21

RELATIVE

ABSOLUTE

LAST 15 MINUTES

LAST HOUR

LAST DAY

LAST WEEK

WATCH LOGS

EPUB/f184827bfaaad8b41dd3250c19f7f1fe1b61a64544d0b72ad5c17367
LAST 15 MINUTES

RELATIVE

ABSOLUTE

LAST 15 MINUTES

LAST HOUR

LAST DAY

LAST WEEK

WATCH LOGS

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/809c76306fb4da6a3bfd75a82e0a7c78faa17f80ae5c8b804fe45be6.png
FlowG () Github <} API Docs Streams £ Settings v @ root v

Pipeline name
bubble @ DOCUMENTATION @ DELETE B SAVE

Pipelines + NEW Transformers + NEW
Other Nodes:

"3 bubble [Y apache [7] -
" debug [/ Y ison [/
" test [Y oo B

Y nesting [/
test_alert [/
'|= est_alert [/ Y refine_container [/] .

P Cww — R test [
sppname=torometne e prometneue matres =
R zepier [/
I - = -
l — I e}
I — = -
Streams + NEW
= acces= [
B= database [/]
+
o B= debug [/}
= B metrics [
] —
reactron | (=2 Prowy () -

v0.12.0

EPUB/be676517d574acbc4f9d8083c8614b1b63f35526f98a04f60537da65.png
FlowG) Github

access LAST 15 MINUTES
database 0o ma
3000
debug 2000
1000
o
18:17:00 18:18:00 18:19:00 18:20:00 18:21:00 18:22:00 18:23:00 18:24:00 18:25:00
proxy
sec Ingested At & host message method path. protocol size status timestamp
21/09/2024 20:26:26 192.168.1.2 POST /login HTTP/1.1 POST /login HTTP/1.1 546 302 2024-08-23 14:56:12 UTC i
SyS|Og 21/09/2024 20:26:26 192.168.1.4 GET /contact HTTP/1.1 GET /contact HTTP/1.1 789 200 2024-08-23 14:58:02 UTC
21/09/2024 20:26:26 192.168.1.10 GET /dashboard HTTP/1.1 GET /dashboard HTTP/1.1 1567 200 2024-08-23 15:02:34 UTC
users 21/09/2024 20:26:26 192.168.1.9 DELETE /delete-item HTTP/1.1 DELETE /delete-item HTTP/1.1 342 403 2024-08-23 15:01:57 UTC
21/09/2024 20:26:26 192.168.1.5 GET /nonexistentpage HTTP/1.1 GET /nonexistentpage HTTP/1.1 217 404 2024-08-23 14:58:56 UTC
21/09/2024 20:26:26 192.168.1.4 GET /contact HTTP/1.1 GET /contact HTTP/1.1 789 200 2024-08-23 14:58:02 UTC
21/09/2024 20:26:26 192.168.1.10 GET /dashboard HTTP/1.1 GET /dashboard HTTP/1.1 1567 200 2024-08-23 15:02:34 UTC
21/09/2024 20:26:26 192.168.1.3 GET /about-us HTTP/1.1 GET /about-us HTTP/1.1 321 404 2024-08-23 14:57:45 UTC
21/09/2024 20:26:26 192.168.1.9 DELETE /delete-item HTTP/1.1 DELETE /delete-item HTTP/1.1 342 403 2024-08-23 15:01:57 UTC
21/09/2024 20:26:26 192.168.1.1 GET /index.html HTTP/1.1 GET /index.html HTTP/1.1 1234 200 2024-08-23 14:55:31 UTC
21/09/2024 20:26:26 192.168.1.6 POST /api/data HTTP/1.1 POST /api/data HTTP/1.1 654 500 2024-08-23 14:59:32 UTC
21/09/2024 20:26:26 192.168.1.6 POST /api/data HTTP/1.1 POST /api/data HTTP/1.1 654 500 2024-08-23 14:59:32 UTC
21/09/2024 20:26:26 192.168.1.8 PUT /update HTTP/1.1 PUT /update HTTP/1.1 2] 204 2024-08-23 15:01:12 UTC
21/09/2024 20:26:26 192.168.1.10 GET /dashboard HTTP/1.1 GET /dashboard HTTP/1.1 1567 200 2024-08-23 15:02:34 UTC
21/09/2024 20:26:26 192.168.1.3 GET /about-us HTTP/1.1 GET /about-us HTTP/1.1 321 404 2024-08-23 14:57:45 UTC
21/09/2024 20:26:26 192.168.1.2 POST /login HTTP/1.1 POST /login HTTP/1.1 546 302 2024-08-23 14:56:12 UTC
311002024 202626 107 168 1 GET_/hlne MTTR/1 1 cET n WTTR/ 1 122 201 20240823 15-00-21_1ITC. M

2,
<» API Docs

& Streams

£ Settings ~

O root v

v0.12.0

EPUB/a18be6b5bbea274bfa01a90f59b6adb8c7a399954a576356efbf1614
FROM 23/09/2024 18:44:21 TO 23/09/2024 18:59:21

RELATIVE ABSOLUTE
~ From
09/23/2024 06:44 PM (o)
~To
09/23/2024 06:59 PM (o)

WATCH LOGS

EPUB/92b5450881fe022470e8679dc11067a7307a7cb3ffb192342aaeda7d
"timestamp": "2024-09-22T06:59:49.461Z",
"fields": {
"host": "192.168.1.3",
"message GET /about-us HTTP/1.1",
: "GET",

"timestamp": "2024-08-23 14:57:45 UTC"

EPUB/avatars124053000avatar.jpg
Rl

